Гамма всплеск

Что такое гамма-излучение?

Электромагнитное излучение, принцип работы.

Ренгеновское излучение, виды, свойства.

Виды гамма-излучения

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 февраля 2024 года; проверки требует 1 правка.

Художественная иллюстрация гамма-всплеска (NASA/Zhang & Woosley)

За первоначальным всплеском обычно следует гаснущее долгоживущее послесвечение, излучаемое на все более длинных волнах (рентген, УФ, оптика, ИК и радио).

Гамма всплеск

Спутники Vela-5A/B в комнате сборки. Спутники А и В разделяются после выхода на орбиту

Механизм, в результате которого за столь короткое время в малом объёме выделяется столько энергии, до сих пор не вполне ясен. Наиболее вероятно, что он различен в случае коротких и длинных гамма-всплесков. На сегодняшний день различают два основных подвида ГВ: длинные и короткие, имеющие существенные различия в спектрах и наблюдательных проявлениях. Так, длинные гамма-всплески иногда сопровождаются взрывом сверхновой звезды, а короткие — никогда. Есть и две основные модели, объясняющие эти два типа катаклизмов.

Длинные гамма-всплески и сверхновые

Длинный гамма-всплеск в видимом диапазоне.

Длинные гамма-всплески, вероятно, связаны со сверхновыми типа Ib/c. В нескольких случаях оптически отождествлённый источник через некоторое время после всплеска показывал характерные для сверхновых спектры и кривые блеска. Кроме того, в большинстве случаев отождествления с галактиками они имели признаки активного звездообразования.

Основная модель длинных гамма-всплесков предложена американским учёным Стеном Вусли — модель коллапсара под названием несостоявшаяся сверхновая (англ. ; Woosley 1993). В этой модели гамма-всплеск порождается джетом (струёй) при коллапсе массивной звезды Вольфа — Райе (по существу, гелиевого или углеродно-кислородного ядра нормальной звезды). Эта модель в принципе может описывать длинные (но не слишком длинные) ГВ. Некоторое развитие этой модели было сделано польским учёным , который использовал термин взрыв гиперновой (англ. ; Paczynski, 1998).

Также, термин гиперновая использовался гораздо раньше другими астрофизиками в ином контексте.

Короткие гамма-всплески и слияния релятивистских объектов

Гамма-излучение — это одна из самых высокоэнергетических форм света во Вселенной. Обычно его фиксируют исходящим от таких объектов как нейтронные звезды и черные дыры. Но телескоп Ферми, выведенный на орбиту Земли в 2008 году специально ради наблюдения за гамма-излучением, зафиксировал тысячи вспышек там, где не ожидалось: над поверхностью нашей планеты.

NASA опубликовало на своем сайте данные, которые объясняют, как и почему излучение появляется.

Визуализация десятилетних наблюдений земных гамма-вспышек

Грозы и гамма-вспышки: таинственные объекты природы

Примерно тысячу раз в день грозы испускают мимолетные вспышки света самой высокой энергии, встречающегося в природе на Земле. Эти события, называемые земными гамма-вспышками, длятся менее миллисекунды и производят гамма-лучи, энергия которых в десятки миллионов раз превышает энергию видимого света, поясняют в космическом агентстве.


Образование гроз

Грозы образуются, когда теплый влажный воздух от земли начинает подниматься и встречается с более холодным воздухом. Сначала в результате этого влага из восходящих воздушных масс конденсируется в капли воды. Затем капли продолжают подниматься, но на определенной высоте сталкиваются с движущимися вниз кристаллами льда — и тогда в облаке возникает заряд статического электричества.


Молнии и гамма-вспышки

Постепенно верхняя часть шторма становится все более положительно заряженной, а нижняя — все более отрицательно, как два конца батарейки. В конце концов противоположные заряды накапливаются настолько, что преодолевают изолирующие свойства окружающего воздуха. И в этот момент возникает молния.


Грозы и антиматерия

Исследуя природу земных вспышек гамма-излучения, ученые пришли к выводу, что они появляются вместе с молнией: возможно, она меняет электрическое поле облака, а это в некоторых случаях позволяет электронам устремляться к верхней части бури почти со скоростью света.

Грозы также могут производить антиматерию. Гамма-луч сталкивается с атомом и создает электрон и позитрон, который является противоположностью электрона в антивеществе.


Гамма-излучение

Гамма-излучение, коротковолновое электромагнитное излучение, принадлежащее к наиболее высокочастотной части спектра электромагнитных волн. Возникает при распаде атомных ядер и элементарных частиц и способно вызывать их превращения.

Гамма-излучение было открыто в 1900 году П. Вилларом и в наши дни продолжает удивлять исследователей своей загадочностью и мощью.


Взаимодействие гроз, молний и гамма-вспышек является удивительным явлением, которое до сих пор остается предметом научного интереса и исследований. Наблюдать эти таинственные процессы и разгадывать их загадки способны только самые отважные умы человечества.

Гамма-излучение имеет высокую энергию и способно проникать через органические ткани, вызывая ионизацию вещества и разрушение клеток. Это делает его опасным для живых организмов. Высокие дозы гамма-излучения могут привести к острой радиационной болезни, повреждению ДНК и раковым заболеваниям.

Однако гамма-излучение также может использоваться для лечения раковых опухолей в рамках радиационной терапии. Специалисты подбирают дозу излучения таким образом, чтобы повредить опухоль, минимизируя при этом воздействие на здоровые ткани.

Таким образом, гамма-излучение является мощным инструментом с разнообразными применениями, однако его использование требует аккуратной и ответственной работы с учетом потенциальных рисков для здоровья людей и окружающей среды.

Искусственные источники гамма-излучения

Искусственными источниками гамма-излучения являются главным образом ускорители электронов (бетатрон, линейные ускорители электронов и др.), отходы атомных электростанций и радиоактивные заражения местности, возникшие в результате испытаний ядерного оружия.

Воздействие гамма-излучения

Воздействие гамма-излучения на живой организм является результатом столкновения вторичного электрона или другой заряженной частицы, рождаемой гамма-квантом, с клетками организма. Эффекты такого воздействия общие для всех видов радиоактивного излучения – могут возникать изменения молекул тканей организма. Важным обстоятельством является то, что, вследствие высокой проникающей способности гамма-излучения, оно воздействует на весь организм.

Среднегодовая эквивалентная доза излучения, получаемая человеком от естественного радиационного фона и искусственных источников излучения, составляет примерно 3,2 мЗв. Из них около 75 % приходится на воздействие природного радиационного фона и 20 % на воздействие излучений в ходе медицинских исследований, включающих диагностику и лечение. В последнем виде облучения основную роль играет рентгеновское и гамма-излучение.

Открытие гамма-всплесков

Многие теории пытались объяснить эти вспышки. Большинство утверждало, что источники находятся в пределах Млечного Пути. Но никаких экспериментальных подтверждений так и не было сделано до 1991 года.

Накопление статистики

Также были установлены следующие эмпирические свойства ГВ: большое разнообразие кривых блеска (плавные и изрезанные на очень малых временных масштабах), бимодальное распределение по длительности (короткие — менее 2 секунд — с более жёстким спектром, и длинные — более 2 секунд — с более мягким спектром).

Открытие послесвечений

Прорыв в этом направлении произошёл в феврале 1997 года, когда итало-голландский спутник BeppoSAX обнаружил гамма-всплеск GRB 970228, а через 8 часов детектор рентгеновских лучей (тоже на борту BeppoSAX) обнаружил затухающее рентгеновское излучение от GRB 970228. Координаты рентгеновского послесвечения были определены с гораздо большей точностью, чем для гамма-лучей.

Эра быстрого отождествления

Затем наземные оптические телескопы также обнаружили в этом районе слабеющий новый источник; таким образом, его положение стало известно с точностью до угловой секунды. Через некоторое время глубокий снимок Хаббловского телескопа выявил на месте бывшего источника далёкую, очень слабую галактику (z = 0,7). Таким образом, космологическое происхождение гамма-всплесков было доказано. В дальнейшем послесвечения наблюдались у многих всплесков, во всех диапазонах (рентген, ультрафиолет, оптика, ИК, радио). Красные смещения оказались очень большими (до 6, в основном в диапазоне 0—4 для длинных гамма-всплесков; для коротких — меньше).

Дата и время публикации

Опубликовано 6 марта 2023 г. в 17:18 (GMT+3). Последнее обновление 6 марта 2023 г. в 17:18 (GMT+3).

Запущенный в 2004 году спутник Swift имеет возможность быстрого (менее минуты) оптического и рентгеновского отождествления всплесков. Среди его открытий — мощные, иногда многократные рентгеновские всплески в послесвечениях, через времена до нескольких часов после всплеска; обнаружение послесвечений ещё до окончания собственно гамма-излучения и т. д.

Применение гамма-излучения

Широкий спектр применения в различных областях, включая медицину, науку, промышленность и безопасность. Ниже представлены некоторые из наиболее распространенных способов использования гамма-излучения:

Гамма всплеск

Это лишь некоторые из множества способов использования гамма-излучения. Оно играет важную роль во многих областях науки и технологий, и его применение продолжает расширяться.

Популярное

Согласно планам России по развитию авиастроения, к 2030 году будет произведено свыше тысячи отечественных самолетов. Перед промышленными предприятиями сейчас стоит масштабная задача — ускорить цикл проектирования, производства и сервиса авиационных двигателей. Во время их сборки могут возникать дефекты, которые тормозят процесс и снижают показатели эффективности. Один из наиболее распространенных дефектов — дисбаланс ротора, основной части турбины двигателя. Он приводит к повышению нагрузки, меняет режим работы и ускоряет разрушение двигателя. Ученые ПНИПУ предложили минимизировать начальный дисбаланс ротора с помощью выбранного метода сборки, а остаточный дисбаланс — балансировкой.

Человечество впервые непреднамеренно изменило форму спутника астероида

В 2022 году зонд DART столкнулся с Диморфом, спутником астероида Дидим. Ученые хотели проверить, можно ли сбить с траектории небольшое, но потенциально опасное для нашей жизни космическое тело. Оказалось, DART не только изменил орбиту маленького объекта, но и полностью его «переворошил».

Что ученые думают о первом испытании на людях

Компания Neuralink, при помощи которой предприниматель Илон Маск надеется совершить революцию в интерфейсах «мозг-компьютер» (BCI), впервые имплантировала человеку устройство «чтения мыслей». Об этом Маск сообщил в твите, опубликованном 29 января. Однако, некоторые обеспокоены отсутствием прозрачности вокруг имплантата, который должен дать возможность управлять устройствами посредством мысли. Реакции ученых и экспертов на это событие обобщает медиа-редакция Nature, а Naked Science приводит перевод этой статьи.

Новый способ выжимания яблочного сока в четыре раза повысил его пользу

Немецкие ученые рассказали о преимуществах новой технологии промышленного производства яблочного сока — с помощью метода спирального пресса с фильтрацией (spiral filter press). Исследователи установили, что он позволяет в четыре раза увеличить содержание в соке полезных для здоровья веществ по сравнению с более традиционным способом отжима.

В 2024 году обновят ударения во многих русских словах

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

Геологи пересмотрели историю возникновения континентов

Канадские исследователи изучили состав пород, вышедших на поверхность при появлении первых континентов. По итогам анализа выяснилось, что новая земная кора возникла не в результате движения тектонических плит, а из-за процессов в океанических плато молодой Земли.

Уровень воды в древнем Каспии был на десятки метров выше современного из-за изменений палеоклимата

Ученые показали, что экстремальный подъем уровня Каспийского моря на десятки метров, произошедший 18-13 тысяч лет назад и получивший название «Великая Хвалынская трансгрессия», мог быть вызван, вопреки существующим гипотезам, не таянием ледника, а естественными изменениями палеоклимата. Оказалось, что из-за холодного климата того периода обширные территории, с которых собирали воду впадающие в Каспий реки, были покрыты многолетней мерзлотой. В результате массы дождевых и талых вод почти не впитывались в мерзлые грунты и стекали в море, испарение с поверхности которого было небольшим. Все эти факторы привели к повышению уровня Каспия и увеличению площади моря более чем вдвое по сравнению с современным. Полученные данные помогут уточнить представления о масштабе колебаний уровня Каспийского моря при изменении климата.

Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Релятивистские джеты

В отличие от собственно гамма-всплеска, механизмы послесвечения достаточно хорошо разработаны теоретически. Предполагается, что некоторое событие в центральном объекте инициирует образование ультрарелятивистской разлетающейся оболочки (лоренц-фактор γ порядка 100). По одной модели, оболочка состоит из барионов (масса её должна составлять 10−8 — 10−6 масс Солнца), по другой — это замагниченное течение, в котором основная энергия переносится вектором Пойнтинга.

Весьма существенно, что во многих случаях наблюдается сильная переменность как в самом гамма-излучении (на временах порядка разрешения прибора — миллисекунд), так и в рентгеновских и оптических послесвечениях (вторичные и последующие вспышки, энерговыделение в которых может быть сравнимо с самим всплеском). До некоторой степени это можно объяснить столкновением нескольких ударных волн в оболочке, двигающихся с разными скоростями, но в целом это явление представляет серьёзную проблему для любого объяснения механизма работы центральной машины: нужно, чтобы после первого всплеска она могла ещё давать несколько эпизодов энерговыделения, иногда через времена порядка нескольких часов.

Послесвечение обеспечивается в основном синхротронным механизмом и, возможно, обратным комптоновским рассеянием.

Кривые блеска послесвечений довольно сложны, так как они складываются из излучения головной ударной волны, обратной ударной волны, возможного излучения сверхновой и т. д. Иногда на последних стадиях излучения наблюдается излом кривой блеска (от степени −1 до −2), что считается свидетельством в пользу наличия релятивистского джета: излом происходит тогда, когда γ-фактор падает до значения ~1/θ, где θ — угол раскрытия джета.

Расстояния и энергетика

Из космологической природы гамма-всплесков ясно, что они должны иметь исполинскую энергию. К примеру, для события GRB 970228 в предположении изотропии излучения энергия только в гамма-диапазоне составляет 1,6⋅1052 эрг (1,6⋅1045 Дж), что на порядок больше энергии типичной сверхновой. Для некоторых гамма-всплесков оценка доходит до 1054 эрг, то есть сравнима с энергией покоя Солнца. Причём эта энергия выделяется за очень короткое время.

Выход энергии происходит в виде коллимированного потока (релятивистского джета), в этом случае оценка энергии уменьшается пропорционально углу раскрытия конуса джета. Это подтверждается также наблюдениями кривых блеска послесвечений (см. ниже). Типичная энергия всплеска с учётом джетов составляет около 1051 эрг, но разброс достаточно большой. Наличие релятивистских джетов означает, что мы видим малую долю всех происходящих во Вселенной всплесков. Оценка их частоты составляет порядка одного всплеска на галактику раз в 100 000 лет.

Доза гамма-излучения

Доза гамма-излучения (Гр) – это единица измерения, используемая для выражения количества энергии, поглощенной телом в результате воздействия гамма-излучения. Единица измерения Гр является международной и используется во многих странах мира.

Гр измеряется в джоулях на килограмм (Дж/кг). Для расчета дозы необходимо знать мощность дозы (Вт/кг), продолжительность воздействия излучения (с) и массу тела (кг). Формула для расчета дозы выглядит следующим образом:

D = P * t * m

Например, если человек массой 70 кг находится в зоне с мощностью дозы 1 Вт/кг в течение 1 часа, то его доза будет равна:

D = 1 Вт/кг * 1 ч * 70 кг = 70 Дж/кг = 0,07 Гр

Таким образом, доза гамма-излучения зависит от мощности дозы, продолжительности воздействия и массы тела. При работе с источниками радиоактивного излучения необходимо учитывать дозу и принимать меры для ее снижения.

Гамма всплеск

Возможная опасность для Земли

Штерн полагает, что гамма-всплеск в нашей галактике случается в среднем раз в миллион лет. Гамма-всплеск такой звезды, как WR 104, может вызвать интенсивное разрушение озонового слоя на половине планеты.

Необъяснимый гамма-источник обнаружили в данных телескопа «Ферми»

Астрономы проанализировали наблюдения космического телескопа за 13 лет в поиске перепадов гамма-излучения, которые совпали бы с аналогичными особенностями излучения в других диапазонах. Так они обнаружили неожиданный и, что главное, пока необъяснимый источник гамма-излучения совсем в другой части неба.

Гамма всплеск

Реликтовое излучение — фоновое тепловое излучение Вселенной, возникшее на первых этапах ее развития, в эпоху первичной рекомбинации, когда вещество достаточно охладилось и сформировались первые атомы. Впервые этот свет астрономы засекли в виде тусклых микроволн в 1965 году.

В 1970-х стало понятно, что это излучение не просто неравномерно, но имеет дипольную структуру: в одном направлении оно чуть горячее, чем в противоположном. Более точно это удалось измерить позже, с помощью обсерватории COBE, отработавшей с 1989 по 1993 год. Оказалось, в направлении созвездия Льва реликтовое излучение примерно на 0,12% горячее и в среднем сильнее. Считается, что причина в движении нашей Солнечной системы относительно фона.

Эта разница мешает изучению более слабых перепадов фонового излучения, поэтому обычно данные наблюдений от нее зачищают. Проблема в том, что микроволновое не единственное фоновое излучение во Вселенной, но с достаточной точностью на сегодня удалось измерить лишь его. А чтобы проверить гипотезы о причине возникновения диполя, нужно видеть полную картину.

Поэтому группа ученых решила отобрать из наблюдений гамма-телескопа LAT космической обсерватории «Ферми» за 13 лет все данные о гамма-излучении с энергией выше трех гигаэлектронвольт. Для сравнения: энергия видимого света — от двух до трех электронвольт.

Затем исследователи «очистили» эти данные от излучения диска Млечного Пути и известных источников гамма-лучей. Тогда ученые и увидели неожиданный для них перепад интенсивности. Результаты работы опубликованы в The Astrophysical Journal Letters.

«Это совершенно случайное открытие. Мы обнаружили гораздо более сильный сигнал, чем тот, который искали, и в другой части неба», — прокомментировал один из авторов исследования Александр Кашлинский, космолог из Мэрилендского университета (США).

Источник гамма-излучения оказался в южном полушарии, в то время как пик реликтового излучения находится в северном. Зато он совпал с источником космических лучей сверхвысоких энергий (UHECR), энергия которых в миллиарды раз выше трех гигаэлектронвольт — минимального значения, по которому авторы новой работы просеивали данные «Ферми».

Примечательно, что совпало не только направление, но и перепад интенсивности — из этой области неба «прилетает» на 7% больше как гамма-лучей, так и частиц, чем в среднем. А в противоположном направлении наблюдается такой же спад. Колебание в количестве космических сверхвысоких энергий обнаружили не так давно, в 2017 году. Ученые логично предположили, что эти феномены связаны друг с другом и у них общий источник. Может, это нейтронные звезды или активные ядра галактик.

Upd.: Ряд исследователей (не бывших авторами новой работы) уже обратили внимание на интересный феномен — открытая гамма-аномалия пространственно совпадает с зоной аномальных значений постоянной Хаббла. Достаточно нетривиальное объяснение этому совпадению предложено здесь.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Виды гамма-излучения

Гамма всплеск

Вот несколько основных источников гамма-излучения:

Гамма всплеск

Свойства гамма-излучения

Гамма всплеск

Гамма всплеск

Открытие гамма-излучения

Это одно из самых важных открытий в истории физики. В 1865 году немецкий физик Вильгельм Конрад Рентген обнаружил, что некоторые вещества испускают невидимые лучи, которые могут проникать через непрозрачные материалы. Эти лучи были названы рентгеновскими лучами, в честь немецкого физика Рентгена.

Гамма всплеск

Открытие рентгеновских лучей стало настоящим прорывом в науке, поскольку они позволили ученым изучать структуру атомов и молекул. Оно нашло применение в медицине, где они используются для диагностики различных заболеваний.

В 1900 году, когда немецкий физик Макс фон Лауэ обнаружил, что при прохождении рентгеновских лучей через кристаллы, они вызывают рассеяние, которое можно наблюдать с помощью дифракции.

Гамма всплеск

Это открытие привело к пониманию того, что рентгеновские лучи являются электромагнитными волнами и что существует еще один тип электромагнитного излучения, который не виден глазу, но может быть обнаружен с помощью специальных приборов.

В 1914 году, американский физик Пьер Кюри и его ассистент Гамильтон использовали специальный прибор, называемый гамма-спектрометром, для обнаружения гамма-лучей от радиоактивных источников.

Они обнаружили, что гамма-лучи имеют высокую энергию и обладают высокой проникающей способностью, и что они могут быть использованы для изучения свойств радиоактивных элементов.

Гамма всплеск

Однако, открытие рентгеновских лучей было не единственным достижением в области физики. В 1932 году английский физик Джеймс Чедвик открыл нейтрон, который является частицей, не имеющей электрического заряда. Нейтроны также играют важную роль в ядерной физике и используются для изучения строения атомных ядер.

Таким образом, открытие гамма-излучения и рентгеновских лучей является одним из ключевых моментов в развитии физики и других наук. Эти открытия позволили ученым лучше понимать структуру материи и использовать их для решения различных задач в науке и технике.

Ключевые выводы

Summarize any video by yourself

Спасибо за отзыв.

У нас есть дополнительная информация.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *