Атмосфера земли с точки зрения статической теории газов стг

Превращение энергии

При ударе потенциальная энергия шара преобразуется обратно в кинетическую энергию, вызывая его остановку. Таким образом, мы видим, как кинетическая и потенциальная энергия играют важную роль в механике объектов.

Заключение

Внутренняя энергия тела – это совокупность его кинетической и потенциальной энергии, которые могут превращаться друг в друга. Понимание этого процесса позволяет нам лучше понять окружающий мир и его законы.

Механическая и потенциальная энергия

Его кинетическая и потенциальная энергия будут равны нулю. Механическая энергия превратилась в другую форму энергии. Мы заметим, что шар немного сплюснулся, а на плите возникла небольшая вмятина.

Шар и плита при ударе деформировались. Измерим температуру шара и плиты сразу после удара. Мы заметим, что они нагрелись. Таким образом, в результате удара шара о плиту изменилось состояние этих тел — они деформировались и нагрелись.

Изменение состояния тел

Но если изменилось состояние тел, то изменилась и энергия частиц, из которых состоят тела. Действительно, мы знаем, что при нагревании тела увеличивается средняя скорость движения молекул. Значит, увеличивается их средняя кинетическая энергия.

Молекулы обладают также и потенциальной энергией. Когда тело деформировалось, то изменилось взаимное расположение его молекул, а значит, изменилась и их потенциальная энергия.

Внутренняя энергия тела

Итак, при соударении изменилась и кинетическая и потенциальная энергия молекул свинца. Следовательно, механическая энергия, которой обладал шар в начале опыта, не исчезла. Она перешла в энергию молекул.

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела. В дальнейшем, рассматривая внутреннюю энергию тела, мы будем понимать под ней кинетическую энергию теплового движения и потенциальную энергию взаимодействия молекул тела.

Виды энергии

При остановке тела механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию тела. Итак, кроме механической энергии, существует еще один вид энергии. Это внутренняя энергия тела.

Взаимосвязь внутренней энергии и температуры

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов. Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Тело, имея некоторый запас внутренней энергии, одновременно может обладать и механической энергией. Например, пуля, летящая на некоторой высоте над землей, кроме внутренней энергии, обладает еще и механической энергией — потенциальной и кинетической.

Сумма энергий всех молекул

Кинетическая и потенциальная энергия одной молекулы очень маленькая величина, ведь масса молекулы мала. Поскольку в теле содержится множество молекул, то внутренняя энергия тела, равная сумме энергий всех молекул, будет велика.

Механическая работа

Единицы работы

В обыденной жизни под понятием работа мы понимаем всё. В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа.

Рассмотрим примеры механической работы. Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Изучение механической работы приводит нас к понятию рычагов. Рычаг – это устройство, которое позволяет усилить силу приложения. Это особенно полезно при подъеме тяжелых предметов или выполнении других работ требующих приложения силы.

Рычаг работает на принципе момента сил. Рычаг можно представить как палку, которая вращается вокруг точки опоры или оси. Если сила приложена на расстоянии от точки опоры, то производится момент сил – произведение силы на плечо рычага.

Момент силы (M) можно вычислить по формуле:

M = F * r,

где F – сила, r – расстояние от точки приложения силы до точки опоры.

Если момент силы равен нулю, то рычаг находится в равновесии. Если момент силы положителен, то рычаг поворачивается по часовой стрелке. Если момент силы отрицателен, то рычаг поворачивается против часовой стрелки.

Другим важным понятием в механике является мощность. Мощность – это скорость выполнения работы. Мощность можно вычислить по формуле:

P = W / t,

где P – мощность, W – работа, t – время, за которое выполнена работа.

Единицей измерения мощности в системе СИ является ватт (Вт). 1 Вт = 1 Дж / 1 с.

Наконец, важным понятием является энергия. Энергия – это способность системы совершать работу. Существует два вида энергии: кинетическая (связана с движением) и потенциальная (связана с положением тела в поле сил, например, высота подъема).

Общий закон сохранения энергии гласит, что энергия не может исчезнуть, она только переходит из одного вида в другой.

Изучение рычагов, мощности и энергии помогает нам лучше понять физические процессы в мире и применить их на практике.

Мощность и работа в физике

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов.

Различные примеры мощности

Другой пример: гектар земли лошадь может вспахать за 10-12 часов, трактор же с многолемешным плугом эту работу выполнит на 40-50 минут.

Кран и трактор выполняют работу быстрее, чем человек и лошадь соответственно. Эта быстрота выполнения работы определяется мощностью двигателя.

Формула для вычисления мощности

Мощность равна отношению работы к времени, за которое она была совершена. Чтобы вычислить мощность, надо работу разделить на время, в течение которого она была совершена. Формула вычисления мощности:

N = A/t

Где N — мощность, A — работа, t — время выполненной работы.

Единицы измерения мощности

Для измерения мощности используется единица измерения — ватт (Вт). Ватт является единицей, при которой в 1 секунду совершается 1 Джоуль работы. Также широко используются киловатты (кВт) и мегаватты (МВт) для измерения более крупных величин мощности.

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример вычисления мощности потока воды

Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.

Дано:

  • Высота плотины h = 25 м
  • Объём воды V = 120 м3
  • Плотность воды ρ = 1000 кг/м3
  • Время протекания воды t = 60 с
  • Ускорение свободного падения g = 9,8 м/с2

Для нахождения мощности используем формулы:

  • Масса падающей воды m = ρV
  • Сила тяжести F = gm
  • Работа A = Fh
  • Мощность N = A/t

После вычислений получаем результат: N = 0,5 МВт

Различные двигатели и их мощность

Различные двигатели имеют мощности от сотых и десятых долей киловатта до сотен тысяч киловатт. Ниже представлен список некоторых двигателей и их мощность в киловаттах:

Вид транспортного средстваМощность двигателя (кВт)
Автомобиль Волга — 310270
Ракета-носитель космического корабляПо мнению учёных

Как видно из примера, мощность двигателей различных транспортных средств может значительно отличаться.

Дизель тепловоза ТЭ10Л 2200 «Восток» 15 000 000

Вертолет Ми — 8 2×1100 «Энергия» 125 000 000

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Зная мощность двигателя, можно рассчитать работу, совершаемую этим двигателем в течение какого-нибудь промежутка времени.

Из формулы N = A/t следует, что

A = Nt.

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

N = 35 Вт

t = 10 мин

Си 600 с.

A = Nt,

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Файл:S pomoshyu blokov.jpg

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами.

К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт. В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, то есть увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм — рычаг.

Файл:Rychag ravnovesiye na rychage 1.jpg

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B, во втором — приподнимает конец B.

Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О. Сила F, с которой рабочий действует на рычаг, меньше силы P, таким образом, рабочий получает выигрыш в силе. При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В. На другом рисунке показана схема этого рычага. Обе силы F1 и F2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F1; ОВ — плечо силы F2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F1 вращает рычаг по ходу часовой стрелки, а сила F2 вращает его против часовой стрелки.

Файл:Rychag ravnovesiye na rychage 2.jpg

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н. При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F1/F2 = l2/l1,

где F1 и F2- силы, действующие на рычаг, l1 и l2, — плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287—212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример. С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

m = 240 кг

g =9,8 Н/кг

l1 = 2,4 м

l2 =0,6 м

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l1 : l2 = 2,4 м : 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Вам уже известно правило равновесия рычага:

F1 / F2 = l2 / l1,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F1l1 = F2l2 .

В левой части равенства стоит произведение силы F1 на ее плечо l1, а в правой — произведение силы F2 на ее плечо l2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы; он обозначается буквой М. Значит,

M = Fl.

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов, можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, то есть моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницы — это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис.). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг. В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Файл:Podvizhniy s podvizhnym.jpg

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r. Такой блок не дает выигрыша в силе. (F1 = F2), но позволяет менять направление действие силы. Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F. Так как плечо ОВ в 2 раза больше плеча ОА, то сила F в 2 раза меньше силы Р:

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза.

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р, а, значит, сама сила F в 2 раза меньше силы Р.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Файл:Uravnoveshivaem na rychage.jpg

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Файл:Izmereniye blok sravneniye.jpg

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F1 и F2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F2 проходит больший путь s2 , а точка приложения большей силы F1 — меньший путь s1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s1 / s2 = F2 / F1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F1 s1 = F2 s2, то есть А1 = А2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F, одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап < Аз или Ап / Аз < 1.

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:

η = Ап / Аз · 100 %.

Пример: На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найти КПД рычага.

g = 9,8 Н/кг

F = 250 Н

h1 = 0.08 м

h2 =0,04 м

Полная (затраченная) работа Аз = Fh2.

Полезная работа Ап = Рh1

Р = gm.

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100 % = 80 %.

Ответ : η = 80 %.

Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20 % ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100 %. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Автомобили и самолеты тепловозы и теплоходы, работают, расходуя энергию сгорающего топлива, гидротурбины — энергию падающей с высоты воды. Да и сами мы, чтобы жить, учиться и работать, возобновляем свой запас энергии при помощи пищи, которую мы едим.

Файл:Sposobnost sovershit rabotu.jpg

Слово «энергия» употребляется нередко и в быту. Так, например, людей, которые могут быстро выполнять большую работу, мы называем энергичными, обладающими большой энергией. Что же такое энергия? Чтобы ответить на этот вопрос, рассмотрим примеры.

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, то есть в джоулях.

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Еп, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

Файл:Koper potencialnaya energiya.gif

А = Fh,

где F — сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

Кинетическая энергия тела обозначается буквой Ек .

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, то есть совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.

За счет скорости большой кинетической энергией обладает летящая пуля.

Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик — большей массы. Брусок В передвинется дальше, то есть будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.

Чем больше масса тела и скорость, с которой он движется, тем больше его кинетическая энергия.

Для того чтобы определить кинетическую энергию тела, применяется формула:

Ек = mv² /2,

где m — масса тела, v — скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

Файл:Prevrasheniye v druguyu mech energiyu.jpg

В природе, технике и быту можно часто наблюдать превращение одного вида механической энергии в другой: потенциальную в кинетическую и кинетическую в потенциальную. Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Файл:Prevrasheniye v druguyu mech energiyu 2.jpg

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *