Деление клетки

Размножение и его виды

Размножение, репродукция, воспроизводство — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни. Способы размножения подразделяются на два основных типа: бесполое и половое.

Бесполое размножение

Бесполое размножение — тип размножения, при котором следующее поколение развивается из соматических клеток без участия репродуктивных клеток — гамет. Этот способ имеет несколько преимуществ перед половым способом: для проведения требуется меньше энергии и времени, а также нет необходимости в поиске полового партнёра, что позволяет обеспечить высокие темпы размножения.

Бесполое размножение у одноклеточных организмов

Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов (бактерии, сине-зелёные водоросли, хлореллы, амёбы, инфузории). Вместе с тем, в неблагоприятных, меняющихся условиях среды практически все особи погибнут, так как в среднем они практически идентичны одной родительской особи.

Бесполое размножение у многоклеточных организмов

Наиболее распространённый способ размножения многоклеточных организмов — деление на две части, с образованием двух отдельных особей. Среди многоклеточных организмов способностью к бесполому размножению обладают практически все растения и грибы, за исключением некоторых видов.

Бесполое размножение у животных

Среди животных способность к бесполому размножению чаще встречается у низших форм, но отсутствует у более развитых. Единственный способ бесполого размножения у животных — вегетативный.

Заключение

Хотя бесполое размножение считается более простым способом размножения, он имеет как свои преимущества, так и недостатки. Понимание различных видов размножения поможет лучше понять функционирование и разнообразие живых организмов.

Размножение у одноклеточных организмов

Деление свойственно прежде всего одноклеточным организмам. Как правило, оно осуществляется путём простого деления клетки надвое. У некоторых простейших (например, фораминифер) происходит деление на большее число клеток.

Преимущества деления клеток у одноклеточных организмов

  1. Крайняя простота деления
  2. Организмы могут размножаться очень быстро
  3. Организм способен бесконечно воспроизводить себя

Процесс деления прокариотических клеток

Амитоз

Амитоз, или прямое деление клетки, деление клеток простым разделением ядра надвое. При амитозе репликация ДНК отсутствует, а клетка сохраняет свой функциональный активность. Этот метод деления применяется у прокариотических клеток.

Мейоз

Мейоз, или редукционное деление клетки, происходит у эукариотических клеток. Этот процесс необходим для уменьшения числа хромосом в ядре на два раза. Мейоз не следует путать с гаметогенезом, который отвечает за образование специализированных половых клеток.

Заключение

Способы размножения у одноклеточных организмов весьма разнообразны и адаптированы к обеспечению быстрого и эффективного размножения в благоприятных условиях.

Бесполое размножение в мире растений и организмов

Важность процесса мейоза для правильного развития клеток

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках).

Мейоз и нечётные полиплоиды

Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Стерильность межвидовых гибридов

Этот же механизм лежит в основе стерильности межвидовых гибридов, так как у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию.

Проблемы с расхождением хромосом

Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счёте, к нежизнеспособности половых клеток, или гамет. Ограничения на конъюгацию хромосом также накладывают хромосомные перестройки, такие как делеции, дупликации, инверсии или транслокации.

Бактериальные споры и их роль

Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры — это покоящиеся клетки со сниженным метаболизмом, окружённые многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток.

Важная функция спор

Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную (делящуюся) клетку.

Вегетативное размножение как способ бесполого возпроизведения

Вегетативное размножение — это образование новой особи из многоклеточной части тела родительской особи, один из способов бесполого размножения, свойственный многоклеточным организмам.

Примеры в мире растений

У водорослей и грибов это происходит путём отделения неспециализированных участков таллома или посредством образования специализированных участков (выводковые почки водоросли сфацелярии и др.).

Вегетативное размножение у высших растений

У высших растений происходит как распадение материнской особи на две и более дочерние особи или как отделение зачатков дочерних от материнской особи (например, клубни, луковицы, выводковые почки).

Бесполое размножение в природе играет важную роль для выживания многих видов и является одним из способов размножения, обеспечивающим генетическое разнообразие в популяции.

Вегетативное размножение животных и растений

В основе вегетативного размножения лежат процессы, сходные с процессами регенерации. Как правило, при отсутствии способности к регенерации у данной группы организмов (например, коловратки, нематоды, пиявки) отсутствует и вегетативное размножение. А при наличии развитой регенерационной способности (кольчатые черви, гидроидные, плоские черви, иглокожие) встречается и вегетативное размножение.

Почкование

Почкование — тип бесполого или вегетативного размножения животных и растений, при котором дочерние особи формируются из выростов тела материнского организма (почек). Почкование характерно для многих грибов, печёночных мхов и животных (простейшие, губки, кишечнополостные, некоторые черви, оболочники, некоторые жгутиковые, гидры, споровики).

У ряда животных почкование не доходит до конца, молодые особи остаются соединёнными с материнским организмом. В ряде случаев это приводит к образованию колоний.

Почкование у одноклеточных

Некоторым видам одноклеточных свойственна такая форма бесполого размножения, как почкование. В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки, а затем этот фрагмент отпочковывается.

Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму. Почкование — вид вегетативного размножения. Почкованием размножаются многие низшие грибы, например дрожжи, и даже многоклеточные животные, например пресноводная гидра.

Фрагментация (деление тела)

Некоторые организмы могут размножаться делением тела на несколько частей, причём из каждой части вырастает полноценный организм, во всём сходный с родительской особью (плоские и кольчатые черви, иглокожие).

Половое размножение

Половое размножение сопряжено с половым процессом (слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмов мужского пола и организмов женского пола).

При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением.

При слиянии двух гамет (в случае оогамии обязательно слияние разнотипных гамет) образуется зигота, обладающая теперь диплоидным (двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей.

Животное, имеющее и мужские, и женские гонады, называется гермафродитом (от имени Гермафродита — мифического обоеполого существа). Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Аналогичный признак у растений называется однодомностью (в отличие от двудомности) и сопряжён с общей эволюционной продвинутостью вида в меньшей степени, чем у животных.

Партеногенез и апомиксис

Партеногенез — это особый вид полового размножения, при котором новый организм развивается из неоплодотворённой яйцеклетки, таким образом, обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называется апомиксис.

Прогенез — это гаметогенез на личиночной стадии. Он подразделяется на:

Зонтиковидные спорофиты на слоевищном гаметофите маршанции из отдела Печёночные мхи

У многих водорослей, у всех высших растений, у части простейших и кишечнополостных в жизненном цикле происходит чередование поколений, размножающихся соответственно половым и бесполым путём — метагенезис. У некоторых червей и насекомых наблюдается гетерогония — чередование разных половых поколений, например, чередование раздельнополых поколений с гермафродитными, или с размножающимися партеногенетически.

Чередование поколений у растений

Гаметофит развивается из споры, имеет одинарный набор хромосом и имеет органы полового размножения — гаметангии. У разногаметных организмов мужские гаметангии, то есть производящие мужские гаметы, называются антеридиями, а женские — архегониями. Так как гаметофит, как и производимые им гаметы, имеет одинарный набор хромосом, то гаметы образуются простым митотическим делением.

При слиянии гамет образуется зигота, из которой развивается спорофит. Спорофит имеет двойной набор хромосом и несёт органы бесполого размножения — спорангии. У разноспоровых организмов из микроспор развиваются мужские гаметофиты, несущие исключительно антеридии, а из мегаспор — женские. Микроспоры развиваются в микроспорангиях, мегаспоры — в мегаспорангиях. При спорообразовании происходит мейотическая редукция генома, и в спорах восстанавливается одинарный набор хромосом, свойственный гаметофиту.

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве.

Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости.

Интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Несмотря на то, что нуклеиновые кислоты являются носителем генетической информации, реализация этой информации невозможна вне клетки, что легко доказывается на примере вирусов. Данные организмы, содержащие зачастую только ДНК или РНК, не могут самостоятельно воспроизводиться, для этого они должны использовать наследственный аппарат клетки. Даже проникнуть в клетку без помощи самой клетки они не могут, кроме как с использованием механизмов мембранного транспорта или благодаря повреждению клеток. Большинство вирусов нестабильно, они гибнут уже после нескольких часов пребывания на открытом воздухе. Следовательно, клетка является генетической единицей живого, обладающей минимальным набором компонентов для сохранения, изменения и реализации наследственной информации, а также ее передачи потомкам.

Бульшая часть генетической информации эукариотической клетки сосредоточена в ядре. Особенностью ее организации является то, что, в отличие от ДНК прокариотической клетки, молекулы ДНК эукариот не замкнуты и образуют сложные комплексы с белками — хромосомы.

Хромосомы, их строение (форма и размеры) и функции

Хромосома (от греч. хрома — цвет, окраска и сома — тело) — это структура клеточного ядра, которая содержит гены и несет определенную наследственную информацию о признаках и свойствах организма.

Иногда хромосомами называют и кольцевые молекулы ДНК прокариот. Хромосомы способны к самоудвоению, они обладают структурной и функциональной индивидуальностью и сохраняют ее в ряду поколений. Каждая клетка несет всю наследственную информацию организма, но в ней работает только небольшая часть.

Основой хромосомы является двухцепочечная молекула ДНК, упакованная с белками. У эукариот с ДНК взаимодействуют гистоновые и негистоновые белки, тогда как у прокариот гистоновые белки отсутствуют.

Лучше всего хромосомы видны под световым микроскопом в процессе деления клетки, когда они в результате уплотнения приобретают вид палочковидных телец, разделенных первичной перетяжкой — центромерой — на плечи. На хромосоме может быть также и вторичная перетяжка, которая в некоторых случаях отделяет от основной части хромосомы так называемый спутник. Концевые участки хромосом называются теломерами. Теломеры препятствуют слипанию концов хромосом и обеспечивают их прикрепление к оболочке ядра в неделящейся клетке. В начале деления хромосомы удвоены и состоят из двух дочерних хромосом — хроматид, скрепленных в центромере.

По форме различают равноплечие, неравноплечие и палочковидные хромосомы. Размеры хромосом существенно варьируют, однако средняя хромосома имеет размеры 5 $×$ 1,4 мкм.

В некоторых случаях хромосомы в результате многочисленных удвоений ДНК содержат сотни и тысячи хроматид: такие гигантские хромосомы называются политенными. Они встречаются в слюнных железах личинок дрозофилы, а также в пищеварительных железах аскариды.

Число хромосом и их видовое постоянство. Соматические и половые клетки

Согласно клеточной теории клетка является единицей строения, жизнедеятельности и развития организма. Таким образом, такие важнейшие функции живого, как рост, размножение и развитие организма обеспечиваются на клеточном уровне. Клетки многоклеточных организмов можно разделить на соматические и половые.

Соматические клетки — это все клетки тела, образующиеся в результате митотического деления.

Изучение хромосом позволило установить, что для соматических клеток организма каждого биологического вида характерно постоянное число хромосом. Например, у человека их 46. Набор хромосом соматических клеток называют диплоидным (2n), или двойным.

Половые клетки, или гаметы, — это специализированные клетки, служащие для полового размножения.

В гаметах содержится всегда вдвое меньше хромосом, чем в соматических клетках (у человека — 23), поэтому набор хромосом половых клеток называется гаплоидным (n), или одинарным. Его образование связано с мейотическим делением клетки.

Количество ДНК соматических клеток обозначается как 2c, а половых — 1с. Генетическая формула соматических клеток записывается как 2n2c, а половых — 1n1с.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Если это различие больше на один, два, три и т. д. гаплоидных набора, то такие клетки называют полиплоидными (три-, тетра-, пентаплоидными соответственно). В таких клетках процессы метаболизма протекают, как правило, очень интенсивно.

Количество хромосом само по себе не является видоспецифическим признаком, поскольку различные организмы могут иметь равное количество хромосом, а родственные — разное. Например, у малярийного плазмодия и лошадиной аскариды по две хромосомы, а у человека и шимпанзе — 46 и 48 соответственно.

Хромосомы человека делятся на две группы: аутосомы и половые хромосомы (гетерохромосомы). Аутосом в соматических клетках человека насчитывается 22 пары, они одинаковы для мужчин и женщин, а половых хромосом только одна пара, но именно она определяет пол особи. Существует два вида половых хромосом — X и Y. Клетки тела женщины несут по две X-хромосомы, а мужчин — X и Y.

Кариотип — это совокупность признаков хромосомного набора организма (число хромосом, их форма и величина).

Условная запись кариотипа включает общее количество хромосом, половые хромосомы и возможные отклонения в наборе хромосом. Например, кариотип нормального мужчины записывается как 46, XY, а кариотип нормальной женщины — 46, XX.

Жизненный цикл клетки

Клетки не возникают каждый раз заново, они образуются только в результате деления материнских клеток. После разделения дочерним клеткам требуется некоторое время для формирования органоидов и приобретения соответствующей структуры, которая обеспечила бы выполнение определенной функции. Этот отрезок времени называется созреванием.

Промежуток времени от появления клетки в результате деления до ее разделения или гибели называется жизненным циклом клетки.

У эукариотических клеток жизненный цикл делится на две основные стадии: интерфазу и митоз.

Интерфаза — это промежуток времени в жизненном цикле, в который клетка не делится и нормально функционирует. Интерфаза делится на три периода: G1-, S- и G2-периоды.

G1-период (пресинтетический, постмитотический) — это период роста и развития клетки, в который происходит активный синтез РНК, белков и других веществ, необходимых для полного жизнеобеспечения вновь образовавшейся клетки. К концу этого периода клетка может начать готовиться к удвоению ДНК.

В S-периоде (синтетическом) происходит сам процесс репликации ДНК. Единственным участком хромосомы, который не подвергается репликации, является центромера, поэтому образовавшиеся молекулы ДНК не расходятся полностью, а остаются скрепленными в ней, и в начале деления хромосома имеет X-образный вид. Генетическая формула клетки после удвоения ДНК — 2n4c. Также в S-периоде происходит удвоение центриолей клеточного центра.

G2-период (постсинтетический, премитотический) характеризуется интенсивным синтезом РНК, белков и АТФ, необходимых для процесса деления клетки, а также разделением центриолей, митохондрий и пластид. До конца интерфазы хроматин и ядрышко остаются хорошо различимыми, целостность ядерной оболочки не нарушается, а органоиды не изменяются.

Часть клеток организма способна выполнять свои функции в течение всей жизни организма (нейроны нашего головного мозга, мышечные клетки сердца), а другие существуют непродолжительное время, после чего погибают (клетки кишечного эпителия, клетки эпидермиса кожи). Следовательно, в организме должны постоянно происходить процессы деления клеток и образования новых, которые замещали бы отмершие. Клетки, способные к делению, называют стволовыми. В организме человека они находятся в красном костном мозге, в глубоких слоях эпидермиса кожи и других местах. Используя эти клетки, можно вырастить новый орган, добиться омоложения, а также клонировать организм. Перспективы использования стволовых клеток совершенно ясны, однако морально-этические аспекты этой проблемы все еще обсуждаются, поскольку в большинстве случаев используются эмбриональные стволовые клетки, полученные из убитых при аборте зародышей человека.

Продолжительность интерфазы в клетках растений и животных составляет в среднем 10– 20 часов, тогда как митоз занимает около 1–2 часов.

В ходе последовательных делений в многоклеточных организмах дочерние клетки становятся все более разнообразными, поскольку в них происходит считывание информации со все большего числа генов.

Некоторые клетки со временем перестают делиться и погибают, что может быть связано с завершением выполнения определенных функций, как в случае клеток эпидермиса кожи и клеток крови или с повреждением этих клеток факторами окружающей среды, в частности возбудителями болезней. Генетически запрограммированная смерть клетки называется апоптозом, тогда как случайная гибель — некрозом.

Митоз — деление соматических клеток. Фазы митоза

Митоз — способ непрямого деления соматических клеток.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, как и в материнской клетке.

Митоз делится на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Профаза — наиболее длительная стадия митоза, в процессе которой происходит конденсация хроматина, в результате чего становятся видны X-образные хромосомы, состоящие из двух хроматид (дочерних хромосом). При этом исчезает ядрышко, центриоли расходятся к полюсам клетки, и начинает формироваться ахроматиновое веретено (веретено деления) из микротрубочек. В конце профазы ядерная оболочка распадается на отдельные пузырьки.

В метафазе хромосомы выстраиваются по экватору клетки своими центромерами, к которым прикрепляются микротрубочки полностью сформированного веретена деления. На этой стадии деления хромосомы наиболее уплотнены и имеют характерную форму, что позволяет изучить кариотип.

В анафазе происходит быстрая репликация ДНК в центромерах, вследствие которой хромосомы расщепляются и хроматиды расходятся к полюсам клетки, растягиваемые микротрубочками. Распределение хроматид должно быть абсолютно равным, поскольку именно этот процесс обеспечивает поддержание постоянства числа хромосом в клетках организма.

На стадии телофазы дочерние хромосомы собираются на полюсах, деспирализуются, вокруг них из пузырьков формируются ядерные оболочки, а во вновь образовавшихся ядрах возникают ядрышки.

После деления ядра происходит деление цитоплазмы — цитокинез, в ходе которого и происходит более или менее равномерное распределение всех органоидов материнской клетки.

Таким образом, в результате митоза из одной материнской клетки образуется две дочерних, каждая из которых является генетической копией материнской (2n2c).

В больных, поврежденных, стареющих клетках и специализированных тканях организма может происходить несколько иной процесс деления — амитоз. Амитозом называют прямое деление эукариотических клеток, при котором не происходит образования генетически равноценных клеток, так как клеточные компоненты распределяются неравномерно. Он встречается у растений в эндосперме, а у животных — в печени, хрящах и роговице глаза.

Деление клетки — основа роста, развития и размножения организмов. Роль митоза и мейоза

Если у одноклеточных организмов деление клетки приводит к увеличению количества особей, т. е. размножению, то у многоклеточных этот процесс может иметь различное значение. Так, деление клеток зародыша, начиная с зиготы, является биологической основой взаимосвязанных процессов роста и развития. Подобные же изменения наблюдаются у человека в подростковом возрасте, когда число клеток не только увеличивается, но и происходит качественное изменение организма. В основе размножения многоклеточных организмов также лежит деление клетки, например при бесполом размножении благодаря этому процессу из части организма происходит восстановление целостного, а при половом — в процессе гаметогенеза образуются половые клетки, дающие впоследствии новый организм. Следует отметить, что основные способы деления эукариотической клетки — митоз и мейоз — имеют различное значение в жизненных циклах организмов.

В результате митоза происходит равномерное распределение наследственного материала между дочерними клетками — точными копиями материнской. Без митоза было бы невозможным существование и рост многоклеточных организмов, развивающихся из единственной клетки — зиготы, поскольку все клетки таких организмов должны содержать одинаковую генетическую информацию.

В процессе деления дочерние клетки становятся все более разнообразными по строению и выполняемым функциям, что связано с активацией у них все новых групп генов вследствие межклеточного взаимодействия. Таким образом, митоз необходим для развития организма.

Этот способ деления клеток необходим для процессов бесполого размножения и регенерации (восстановления) поврежденных тканей, а также органов.

Три типа клеточного деления. Слева — деление безъядерных клеток (прокариот)

Прокариотические клетки делятся надвое. Сначала клетка удлиняется. В ней образуется поперечная перегородка. Затем дочерние клетки расходятся.

Деление эукариотических клеток

Существует два основных способа деления ядра эукариотических клеток: митоз и мейоз. Кроме того, в некоторых случаях ядра делятся путём амитоза.

Амитоз, или прямое деление, — это деление интерфазного ядра путём перетяжки без образования веретена деления. Такое деление встречается у одноклеточных организмов. Амитоз — самый экономичный способ деления: энергетические затраты при нём весьма незначительны. К амитозу близко клеточное деление у прокариот. Бактериальная клетка содержит только одну, чаще всего кольцевую молекулу ДНК, прикрепленную к клеточной мембране. Перед делением клетки ДНК реплицируется и образуются две идентичные молекулы ДНК, каждая из которых также прикреплена к клеточной мембране. При делении клетки клеточная мембрана врастает между этими двумя молекулами ДНК, так что в конечном итоге в каждой дочерней клетке оказывается по одной идентичной молекуле ДНК. Такой процесс получил название прямого бинарного деления.

Подготовка к делению

Эукариотические клетки, имеющие ядра, начинают подготовку к делению на определённом этапе клеточного цикла — в интерфазе. Именно в период интерфазы в клетке происходит синтез белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы синтезируется её точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10-20 ч. Затем наступает процесс деления — митоз.

Основная статья: Митоз

Митоз (реже: кариокинез или непрямое деление) — деление ядра эукариотической клетки с сохранением числа хромосом. В отличие от мейоза, митотическое деление протекает без осложнений в клетках любой плоидности, поскольку не включает как необходимый этап конъюгацию хромосом в профазе.

Основная статья: Мейоз

Мейоз — это особый способ деления клеток, в результате которого происходит уменьшение числа хромосом вдвое в каждой дочерней клетке. Впервые он был описан Вальтером Флеммингом в 1882 году у животных и Эдуардом Страсбургером в 1888 году у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора получают в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, то есть кариотип организмов данного вида в ряду поколений остается постоянным.

Деление тела клетки

В процессе деления тела эукариотной клетки (цитокинеза) происходит разделение цитоплазмы и органелл между новыми клетками и старыми.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *