Источник электрического тока
Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.
Люминофоры
По химической природе люминофоры разделяются на неорганические и органические. Свечение неорганических люминофоров (кристаллофосфоров) обусловлено присутствием посторонних катионов, содержащихся в малых количествах.
Люминофо́р (от лат. — свет и др.-греч. — несущий)
— вещество, способное преобразовывать поглощаемую им энергию в световое излучение (люминесцировать).
Сверхпроводимость
Cвойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известно несколько сотен соединений, способных переходить в сверхпроводящее состояние.
Классификация сверхпроводников
Существует несколько критериев для классификации сверхпроводников:
Способ возбуждения люминесценции | Вид люминофоров |
---|---|
α-, β- излучением радиоактивных волн | Радиолюминофоры |
Рентгеновским или γ- излучением | Рентгенолюминофор |
Вид люминесценции | Вид поглощаемой энергии |
Фотолюминесценция | Электромагнитное излучение (УФ, видимое) |
Рентгенолюминесценция | Электромагнитное излучение (рентгеновское) |
Катодолюминесценция | Кинетическая энергия электронов |
Электролюминесценция | Энергия электрического поля |
Радиолюминесценция | Энергия α-, β-, γ- лучей, ионов |
Хемилюминесценция | Энергия химической реакции |
Биолюминесценция | Энергия биохимической реакции |
Триболюминесценция | Механическая энергия трения |
Внутрицентровой | Используется непроводящий люминофор с, или люминофор с дискретными центрами |
Рекомбинационный | Используется фотопроводящий люминофор |
Вид люминесценции Временная характеристика
Люминесценция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.
До XX века теоретические представления о сущности хемилюминесценции состояли в том, что часть выделяющейся при химической реакции энергии не превращается в теплоту; атомы реагирующих веществ переходят при этом в возбужденное состояние, проявляющееся в свечении.
В XX веке Каутский и Цохер в работе над ненасыщенными соединениями кремния обнаружили, что при действии света на них происходит очень яркое явление хеми-, катодо- и фотолюминесценции (фосфоресценции и флюоресценции). Учёные обнаружили, что при охлаждении происходит усиление люминесценции, что навело их на мысль о том, что источником хемилюминесценции могут быть те же объекты, которые вызывают флюоресценцию. То есть, атомы вещества, которые не принимают непосредственного участия в химической реакции, а получающие энергию для свечения от прореагировавших частиц.
В настоящее время явление люминесценции активно используется в создании люминесцентных ламп и светодиодов, в люминофорных экранах для медицинского оборудования, в цветных экранах телевизоров и других электронных приборов, в дизайне, а также в системе безопасности и эвакуации.
С каждым годом технологии производства люминесцирующих веществ совершенствуются, что помогает создавать люминофоры с улучшенными световыми качествами.
Литература
- Боголюбов Н. Н., Толмачев В. В., Ширков Д. В. Новый метод в теории сверхпроводимости. — М.: Изд-во АН СССР, 1958.
- В. Л. Гинзбург, Е. А. Андрюшин. Сверхпроводимость. — М.: Альфа-М, 2006.
- Жилич А. Г. Сверхпроводимость // Физика на пороге новых открытий. — Л.: Изд-во ЛГУ, 1990.
График открытий сверхпроводимости с 1900 по 2015 годы
Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.
Нулевое сопротивление — не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.
Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I рода (к ним, в частности, относится ртуть) и II рода (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.
Открытие сверхпроводников и их применение в электромагнитах
Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока.
Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².
Температуры перехода различных химических элементов и их бинарных гидридов в состояние сверхпроводимости
Эффект Джозефсона и его применение
В 1962 году английским физиком Брайаном Джозефсоном был открыт (получивший позже его имя) эффект протекания сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника.
Инвертор напряжения: работа и применение
Коронный разряд: возникновение и применение
Параллельная работа трансформаторов: преимущества и особенности
Типы сигналов и их различия
Логические элементы: их функции и таблицы истинности
Устройство и принцип работы трансформатора
Заряд и разряд конденсатора: объяснение процесса
Параметры переменного тока и их значения
Программируемый логический контроллер (ПЛК): его назначение
Гидроэнергетика и преимущества использования
Закон Ома для участка цепи: объяснение формулы
Действия электрического тока: тепловое, химическое, магнитное, световое и механическое
Солнечная энергия и ее использование
Виды датчиков и их характеристики
Устройство силового трансформатора
Законы электродинамики: основные положения
Принцип работы электрического дросселя
Токовая петля 4-20 мА: работа и применение
Треугольники в электрических цепях
Основные понятия об электричестве
Магнитная проницаемость и ее значение
Линейное и фазное напряжение: различия и соотношение
Феррорезонанс в электрических цепях
Номинальный ток в электротехнике: объяснение понятия
Синхронные машины: основные виды и назначение
Обозначения на электрических схемах: графическое представление
Постоянный ток: параметры и характеристики
Опоры воздушных линий электропередачи: виды и функции
Основные законы электротехники: краткое изложение
Схемы обмоток трансформаторов и их подключение
Законы Кирхгофа: формулы и использование
Электромагниты и их применение
Переменный ток и его отличие от постоянного
Поставляемые данные являются только примером эскиза содержимого статьи, дополнительные сведения и исследования могут быть внесены по запросу.
Применение люминофоров в технике
Использование люминофоров в технике позволяет нам экономить на электроэнергии, так как развитие полупроводниковой техники стимулировало работы по созданию инжекционных электролюминесцентных источников освещения.
Применение в электронике и медицине
Для экранов приемных телевизионных трубок практикуется использование смесей люминофоров для получения высокой яркости свечения близкого к белому. Применение люминофоров в медицинской отрасли позволяет делать рентген и флюорографию.
Применение в безопасности
Способность люминофоров светиться без электрического источника энергии нашла применение в системах эвакуации и пожарной безопасности.
Виды люминофоров
- Неорганические люминофоры: применяются в лампах, экранах, индикаторах радиации.
- Органические люминофоры: используются для ярких флуоресцентных красок, косметики, криминалистики.
Примеры люминофоров
Белые светодиоды: содержат кристалл, излучающий синий свет, покрытый люминофором на основе иттрий-алюминиевого граната (YAG).
Кинескопы: разработаны люминофоры, дающие три основных цвета: синий (ZnS:Ag), зелёный (ZnSe:Ag) и красный (Zn3(Po4)2:Mn).
Синтез люминофоров
Технология изготовления люминофоров относится к высокотемпературному тонкому неорганическому синтезу. Люминофоры используют в виде поликристаллических порошков, реже в виде монокристаллов и тонких плёнок. Синтез люминофоров производят при температуре 900—1200ºС.
Пример синтеза
Халькогениды элементов второй группы: сульфиды щелочноземельных металлов синтезируют прокаливанием смесей соответствующих карбонатов с активатором, серой, плавнями и восстановителем. Например, сульфид цинка можно получить сероводородным методом.
Тиосульфатный метод получения сульфидов
Тиосульфатный метод основан на реакциях, которые могут быть упрощенно записаны как:
[reaction1] [reaction2]В итоге, использование люминофоров в различных областях позволяет создавать яркие светящиеся материалы и обеспечивать эффективное использование света в различных технических устройствах.
При синтезе халькогенидных люминофоров исходные сульфиды получают заранее. Синтез происходит в 3 этапа:
На технических весах взвешивают нужное количество халькогенида (порошок) и добавляют к нему заданное количество растворов плавня (вещество, добавляемое к руде при её плавке для увеличения плавкости имеющихся в ней примесей и образования шлаков) и активатора (вещество, интенсифицирующее физические и химические процессы). Шихта (исходная смесь, использующаяся в пирометаллургических или иных высокотемпературных процессах) тщательно перемешивается.
Шихта высушивается при 100—120ºС в сушильном шкафу до пыления в течение времени зависящего от количества шихты (примерно 0,5-1 час).
Многие металлы II, III, IV групп периодической системы обладают люминесценцией при фото-, катодном и рентгеновском возбуждении, но практическое применение имеют немногие. Наиболее широкое применение получил оксид цинка, использующийся в качестве катодолюминофора с очень коротким послесвечением, а также в низковольтных катодолюминофорных индикаторах.
Левитация YBCO в условиях сверхпроводимости
Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота). К сожалению, практически все высокотемпературные сверхпроводники не технологичны (хрупки, не обладают стабильностью свойств и т. д.), вследствие чего в технике до сих пор применяются в основном сверхпроводники на основе сплавов ниобия.
Явление сверхпроводимости используется для получения сильных магнитных полей (например, в циклотронах), поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока (вихри Абрикосова). Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2. В технике для изготовления сверхпроводящих магнитов применяются, в основном, следующие сверхпроводники:
Соединение Tc, K jc, А/см2 (Тл), при 4,2 К Bc, Тл (T, K)
NbTi 9,5—10,5 (3—8)⋅104 (5) 12,5—16,5 (1,2)12 (4,2)
Nb3Sn 18,1—18,5 (1—8)⋅105 (0) 24,5—28 (0)
NbN 14,5—17,8 (2—5)⋅107 (18) 25 (1,2)8—13 (4,2)
Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, как не основанных на свойствах сверхпроводимости (первые четыре), так и сверхпроводниковых детекторов (последние три):
InGaAs PFD5W1KSF APS (Fujitsu) 1⋅106 ≈20 ≈6⋅103 ≈1⋅10-17
R5509-43 PMT (Hamamatsu) 9⋅106 1 1,6⋅104 ≈1⋅10-16
Si APD SPCM-AQR-16 (EG&G) 5⋅106 0,01 ≈1⋅10-16 –
TES 5⋅103 90 менее 1⋅10-3 менее 1⋅10-19
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).
Сверхпроводники также применяются в маглевах.
Явление зависимости температуры перехода в сверхпроводящее состояние от величины магнитного поля используется в криотронах — управляемых сопротивлениях.
Перспективным направлением является создание сверхпроводящих электрических машин.
Нулевое электрическое сопротивление
Электрические кабели для ускорителей в CERN: сверху обычные кабели для Большого электрон-позитронного коллайдера; внизу — сверхпроводящие для Большого адронного коллайдера.
Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).
Сверхпроводники в высокочастотном поле
Характер изменения теплоемкости (cv, синий график) и удельного сопротивления (ρ, зелёный), при фазовом переходе в сверхпроводящее состояние
Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс — температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь — от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников.
Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а, следовательно, терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.
Схема эффекта Мейснера. Показаны линии магнитного поля и их вытеснение из сверхпроводника, находящегося ниже своей критической температуры
Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в вытеснении постоянного магнитного поля из сверхпроводника. Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов вблизи поверхности сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.
Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением
где — критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая , поскольку он создаёт магнитное поле, большее критического.
Разрушение сверхпроводящего состояния под действием магнитного поля отличается у сверхпроводников I и II рода. Для сверхпроводников II рода существует 2 значения критических поля: Нc1 при котором магнитное поле проникает в сверхпроводник в виде вихрей Абрикосова и Нc2 — при котором происходит исчезновение сверхпроводимости.
Эффект Литтла — Паркса
Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.
Гравитомагнитный момент Лондона
Электрический ток выполняет работу, когда протекает через электрическую цепь или проводник. Работа, совершаемая электрическим током, связана с передачей энергии от источника питания к потребителю или выполнением полезных действий в электрических устройствах. Вот несколько способов, которыми электрический ток выполняет работу:1. Электрический ток является способом передачи электрической энергии от источника питания, такого как электростанция или батарея, к электрическим устройствам или потребителям. Ток протекает через проводники и поставляет энергию, необходимую для работы устройств, таких как лампы, компьютеры, холодильники и другие электроприборы.2. Электрический ток может приводить в действие электродвигатели и электромагниты, которые преобразуют электрическую энергию в механическую работу. Например, электродвигатели используются в автомобилях, лифтах, фабричных машинах и других устройствах для приведения в движение механизмов, осуществления транспортировки и выполнения различных механических операций.3. Протекающий электрический ток создает сопротивление в проводниках, что приводит к выделению тепла. Этот принцип используется в электрических обогревателях, плитах, водонагревателях и других устройствах, где электрический ток преобразуется в тепловую энергию.4. Электрический ток может приводить к испусканию света в некоторых материалах. Это явление называется электрическим свечением. Использование данного принципа в различных типах ламп позволяет создавать искусственное освещение, такое как лампочки накаливания, люминесцентные лампы, светодиоды и и другие источники света, которые работают на основе электрического тока.5. В электрохимических системах, таких как аккумуляторы и электролиз, электрический ток используется для проведения химических реакций. Прохождение тока через электролит вызывает окислительно-восстановительные реакции, в результате которых происходит зарядка или разрядка аккумулятора, электролиз веществ и другие процессы. 6. Электрический ток позволяет регулировать и управлять работой электрических устройств. Использование различных элементов управления, таких как выключатели, реле, транзисторы и микроконтроллеры, позволяет контролировать и изменять ток в цепи. Это позволяет включать и выключать устройства, регулировать их яркость, скорость или другие параметры работы.7. В электрических системах связи, таких как проводные и беспроводные сети, электрический ток используется для передачи информации в виде сигналов. Например, в электрических проводах или оптоволоконных кабелях электрический сигнал представляет собой последовательность импульсов, которые могут кодировать голос, данные, видео и другую информацию.8. Протекающий электрический ток в проводниках создает магнитное поле вокруг себя. Этот принцип используется в электромагнитах, электромагнитных клапанах, электромагнитных моторах и других устройствах, где электрический ток взаимодействует с магнитными полями для выполнения работы или управления другими системами.Это лишь некоторые примеры работы, которую совершает электрический ток. В зависимости от конкретной системы, применения и устройства, электрический ток может выполнять разнообразные задачи и обеспечивать различные виды энергии и функциональность.Что такое электрический токДействия электрического тока: тепловое, химическое, магнитное, световое и механическое Работа и мощность электрического токаЭнергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Электрическая энергия или работа — произведение напряжения, силы тока в цепи и времени его прохождения.Вот несколько примеров с цифрами, чтобы проиллюстрировать работу электрического тока: 1. Работа электрического двигателям, у вас есть электрический двигатель, который потребляет ток величиной 10 ампер и напряжение 120 вольт в течении 1 часа. Тогда мощность, потребляемая этим двигателем, будет равна произведению тока на напряжение:Мощность = Ток х Напряжение = 10 А х 120 В = 1200 ватт (или 1,2 киловатта). Энергия = Мощность х Время = 1,2 х 1 = 1,2 киловатт-часов.2. Потребление энергии в домашней электрической сетиПредположим, что ваш дом потребляет среднюю мощность 5 киловатт в течение 3 часов. Тогда общая работа, совершаемая электрическим током за это время, будет равна: Энергия = Мощность х Время = 5 кВт х 3 ч = 15 киловатт-часов.3. Тепловая генерация в электрическом обогревателеПредположим, у вас есть электрический обогреватель мощностью 2000 ватт, который работает в течение 2 часов. Тогда количество тепла, выделяемого обогревателем, можно рассчитать, учитывая, что работа равна количеству выделяемого тепла: Энергия = Мощность х Время = 2000 Вт х 2 ч = 4000 ватт-часов (или 4 киловатт-часа).4. Световая энергия светодиодаПредположим, у вас есть светодиодная лампа мощностью 10 ватт, которая горит в течение 5 часов. Тогда электрическая энергия, преобразуемая в световую энергию лампой, будет равна:Энергия = Мощность х Время = 10 Вт х 5 ч = 50 ватт-часов (или 0,05 киловатт-часа).Мощность постоянного токаРасчет мощности трехфазного токаЭлектролиз – примеры расчета
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Теоретическое объяснение эффекта сверхпроводимости
Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга — Ландау, стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине XX века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина — Купера — Шриффера, созданная ими в 50-е годы XX столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии. При создании своей теории авторы опирались на изотопический эффект, то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.
Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу — объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.
Основную проблему для теории БКШ представляет существование высокотемпературной сверхпроводимости, которую этой теорией описать не получается.
Виды источников электрического тока
Существуют следующие виды источников электрического тока:
В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.
Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.
СПРАВКА! Чтобы получить термопару, необходимо соединить 2 различных металла.
В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.
С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.
Все химические источники можно разбить на 3 группы:
Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.
ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.
Существует 3 вида гальванических источников (или батареек):
Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.
В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.
В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.
Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:
Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.
СПРАВКА! Один элемент свинцово-цинкового аккумулятора вырабатывает напряжение 2 В. Соединив элементы последовательно, можно получить любое напряжение, кратное 2. Например, в автомобильных аккумуляторах напряжение 12 В, т.к. соединены 6 элементов.
Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.
Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.
ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.
В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.
СПРАВКА! Никель-кадмиевые аккумуляторы можно хранить в разряженном состоянии, в отличии от литий-ионных.
Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.
https://youtube.com/watch?v=Q6gR-kXBJao%3Fstart%3D10%26feature%3Doembed
ВАЖНО! Первоначально тепловые химические источники не могут давать электрический ток. В них электролит содержится в твёрдом состоянии и для приведения батареи в рабочее состояние необходим разогрев до 500-600°C. Такой разогрев осуществляется специальной пиротехнической смесью, которая воспламеняется в нужный момент.
Отличие реального источника от идеального
Идеальный источник по законам физики должен обладать бесконечным внутренним сопротивлением, чтобы обеспечить постоянство электрического тока в нагрузке. Реальные источники имеют конечное внутренне сопротивление, а значит ток зависит как от внешней нагрузки, так и от внутреннего сопротивления.
Вот вкратце и всё о разнообразии современных источников электрического тока. Как видно из обзора, на сегодняшний день создано внушительное количество источников с характеристиками, подходящими для любой сферы применения.