Открытие электромагнитной индукции имело огромное значение для дальнейшего использования электричества в различных областях. Благодаря этому открытию были разработаны генераторы переменного тока, которые на сегодняшний день являются неотъемлемой частью любой электростанции.
Электромагнитная индукция также легла в основу работы трансформаторов, которые необходимы для передачи электроэнергии на большие расстояния. Кроме того, это явление используется в различных инженерных проектах, в том числе в создании электромоторов, датчиков и других устройств.
Сравнение электромагнитной и магнитной индукции
Электромагнитная индукция | Магнитная индукция |
---|---|
Процесс, при котором ток возникает в проводящем контуре при изменении магнитного потока | Векторная физическая величина, показывающая интенсивность магнитного поля |
Связана с возникновением электрического поля и поляризации | Связана с магнитными свойствами материалов |
Электромагнитная индукция и магнитная индукция — это разные концепции, которые играют важную роль в физике и технике.
Заключение
Электромагнитная индукция — это важное явление, которое позволяет преобразовывать механическую энергию в электричество и использовать его в различных областях. Открытие этого явления Майклом Фарадеем стало отправной точкой для развития современной электротехники и энергетики. Понимание принципов электромагнитной индукции позволяет разрабатывать новые технологии и повышать эффективность использования электроэнергии.
Как работают машины на основе электромагнитной индукции
Благодаря открытию электромагнитной индукции функционируют многие двигатели и генераторы тока. Они обладают достаточно простым принципом действия, основанным на законе электромагнитной индукции.
Магнитное поле изменяется в результате перемещения магнита. При воздействии на магнит, расположенный в замкнутом контуре, в этой цепи появляется электричество. Таким образом работает генераторная установка.
В обратной ситуации, при пропускании электрического тока от источника по контуру, магнит, который находится внутри цепи, придет в движение, на которое влияет магнитное поле, созданное электричеством. По такому принципу собирают электродвигатели.
Виды электростанций и механическая энергия
С помощью генераторов тока механическая энергия преобразуется в электрическую. Существуют разные виды электростанций, которые в качестве механической энергии используют энергетические ресурсы:
- Водяные электростанции
- Газовые электростанции
- Атомные электростанции
Полученное электричество поступает по кабельным сетям к жилым комплексам и предприятиям. Достигнув потребителей, электрическая энергия преобразуется обратно в механическую в электродвигателях.
Научные открытия и применение в современном мире
На основе электромагнитной индукции создано огромное число машин и приборов. Наиболее яркими изобретениями являются генераторы тока и электродвигатели.
Благодаря великому научному открытию электромагнитной индукции человечеству удалось совершить огромный рывок в области развития электротехники.
Заключение
Электромагнитная индукция играет ключевую роль в современных технологиях. Благодаря данному феномену мы можем использовать механическую энергию для производства электричества и наоборот. Это важное открытие продолжает оставаться в центре развития многих отраслей индустрии.
История гальванометра
Термин гальванометр впервые появился в 1836 году, произошел от фамилии ученого Луиджи Гальвани.
Происхождение гальванометра
В 1821 году Поггендорф усовершенствовал конструкцию мультипликатора, снабдив его измерительной шкалой. В этом же году Ампер сконструировал астатический аппарат, представлявший собой две жестко связанные параллельные магнитные стрелки.
Новые разработки
В 1826 году Поггендорф ввел метод зеркального отсчета, развитый впоследствии Гауссом (1832) и примененный в зеркальном гальванометре Вебером (1846).
Разнообразие гальванометров
В 1825 году Антуан Беккерель предложил эскиз дифференциального гальванометра. В 1837 году Клод Пулье предложил тангенциальный гальванометр или тангенс-буссоль.
Применение гальванометра
Чаще всего гальванометры используют в качестве аналогового измерительного прибора для измерения силы постоянного тока, протекающего в цепи.
Современные гальванометры
Гальванометры конструкции д’Арсонваля/Уэстона, используемые на сегодняшний день, сделаны с небольшой поворачивающейся катушкой, находящейся в поле постоянного магнита. К катушке прикреплена стрелка.
Чувствительность гальванометра
Основная чувствительность гальванометра может быть, например, 100 мкА (при падении напряжения, скажем, 50 мВ, при полном токе). Используя шунты, можно измерять большие токи.
Дата | Событие |
---|---|
1836 год | Появление термина гальванометр |
1821 год | Усовершенствование конструкции мультипликатора |
1825 год | Предложение эскиза дифференциального гальванометра |
1837 год | Предложение тангенциального гальванометра или тангенс-буссоля |
1826 год | Внедрение метода зеркального отсчета |
Тангенциальный гальванометр
Тангенциальный гальванометр был создан компанией Баннела около 1890 года. Он является одним из первых гальванометров, использованных для измерения электрического тока. Работает с помощью компаса, который используется для сравнения магнитного поля, создаваемого неизвестным током, с магнитным полем Земли.
Принцип работы
Сам прибор состоит из катушки, сделанной из изолированной медной проволоки, намотанной на немагнитную рамку, которая располагается вертикально. Рамка может поворачиваться вокруг вертикальной оси, проходящей через её центр. Компас располагается горизонтально и имеет круговую шкалу, разделенную на четыре квадранта (0° – 90° каждый). К магнитной стрелке компаса прикреплен длинный алюминиевый указатель.
Преимущества и недостатки
Тангенциальный гальванометр обеспечивает высокую точность измерений и используется для измерения малых токов. Однако для широких диапазонов значений тока или напряжения его применение может быть неэффективным из-за ограниченного диапазона шкалы.
Заключение
Тангенциальный гальванометр является важным инструментом для измерения электрических токов с высокой точностью. Его устройство и принцип работы делают его неотъемлемой частью лабораторного оборудования и позволяют проводить точные измерения тока и напряжения.
В процессе работы гальванометр устанавливают так, чтобы стрелка компаса совпала с плоскостью катушки. Затем к катушке подводят измеряемый ток. Ток создаёт магнитное поле на оси катушки, перпендикулярное магнитному полю Земли. Стрелка реагирует на векторную сумму двух полей и отклоняется на угол, равный тангенсу отношения этих полей.
Гальванометр ориентирован так, что плоскость катушки параллельна магнитному меридиану Земли, то есть горизонтальной составляющей магнитного поля Земли. Когда ток проходит через катушку, в катушке создаётся магнитное поле, перпендикулярное катушке. Величина магнитного поля:
Два перпендикулярных поля векторно складываются и стрелка компаса отклоняется на угол , равный:
Из тангенциального закона
где — понижающий коэффициент тангенциального гальванометра.
Одна из проблем тангенциального гальванометра — сложности при измерении очень больших и очень малых токов.
Измерение магнитного поля Земли
Тангенциальный гальванометр также можно использовать для измерения горизонтальной составляющей геомагнитного поля. Для этого низкое напряжение питания, подключают последовательно с реостатом, гальванометром и амперметром. Гальванометр располагают так, чтобы магнитная стрелка была параллельна катушке, при отсутствии в ней тока. Затем на катушку подаётся напряжение, которое регулируют реостатом до такой величины, чтобы стрелка отклонилась на угол 45° и величина магнитного поля на оси катушки становится равной горизонтальной составляющей геомагнитного поля Земли. Это поле можно рассчитать через ток, измеренный амперметром, число витков катушки и её радиус.
В качестве подвижного и неподвижного элемента используются катушки с током. Частный случай — низкочастотный аналоговый ваттметр.
Вибрационные гальванометры являются разновидностью зеркальных гальванометров. Собственная частота колебаний движущихся частей настроена на строго определённую частоту, обычно 50 или 60 Гц. Возможны более высокие частоты до 1 кГц. Поскольку частота зависит от массы подвижных элементов, высокочастотные гальванометры имеют очень малые размеры. Настройка вибрационного гальванометра осуществляется изменением силы натяжения пружины.
Вибрационные гальванометры переменного тока предназначены для определения малых значений силы тока или его напряжения. Подвижная часть подобных приборов имеет достаточно низкий момент инерции. Их наиболее распространённое применение в качестве нуль-индикаторов в мостовых схемах переменного тока и компараторах. Резкий резонанс колебаний в вибрационном гальванометре, делает его очень чувствительным к изменениям частоты измеряемого тока и может быть использован для точной настройки приборов.
Тепловой гальванометр состоит из проводника с током, удлиняющимся при нагреве, и рычажную систему, преобразующую это удлинение в движение стрелки.
Прочие элементы и особенности конструкции
Современный зеркальный гальванометр от фирмы Scanlab
Большой точности измерений, а также наибольшей скорости реакции стрелки можно достигнуть, используя зеркальный гальванометр, в котором в качестве указателя используется небольшое зеркальце. Роль стрелки играет луч света, отражённый от зеркала. Зеркальный гальванометр был изобретён в 1826 году Иоганном Христианом Поггендорфом.
Зеркальные гальванометры широко использовались в науке, до того как были изобретены более надёжные и стабильные электронные усилители. Наибольшее распространение они получили в качестве записывающих устройств в сейсмометрах и подводных коммуникационных кабелях. В настоящее время высокоскоростные зеркальные гальванометры используют в лазерных шоу, для того чтобы перемещать лазерные лучи и создавать красочные фигуры в дыму вокруг аудитории. Некоторые виды таких гальванометров применяют для лазерной маркировки разнообразных вещей: от ручных инструментов до полупроводниковых кристаллов.
Гальванометр является базовым блоком для построения других измерительных приборов. На основе гальванометра можно построить амперметр и вольтметр постоянного тока с произвольным пределом измерения.
Для получения амперметра необходимо подключить шунтирующий резистор параллельно гальванометру.
Для получения вольтметра необходимо подключить гасящий резистор (добавочное сопротивление) последовательно с гальванометром.
Если к гальванометру не подключено никаких дополнительных резисторов, то его можно считать как амперметром, так и вольтметром (в зависимости от того, как гальванометр включён в цепь и как интерпретируются показания).
В сочетании с датчиком света (фотодиодом) или температуры (термоэлементом), гальванометр может быть использован в качестве, соответственно, экспонометра в фотографии, измерителя разности температур и т. п.
Для измерения заряда, протекающего через гальванометр в виде короткого одиночного импульса, используется баллистический гальванометр, в котором наблюдают не отклонение рамки, а её максимальный отброс после прохождения импульса.
Гальванометр используется также в качестве указателя (нуль-индикатора) отсутствия тока (напряжения) в цепях. Для этого он обычно исполняется с нулевым положением стрелки посередине шкалы.
Механическая запись электрических сигналов
Гальванометры используется для позиционирования писчиков в осциллографах, например в аналоговых электрокардиографах. Они могут иметь частотный отклик в 100 Гц и отклонение писчиков в несколько сантиметров. В некоторых случаях (у энцефалографа) гальванометры настолько сильны, что двигают писчики, находящиеся в непосредственном контакте с бумагой. Их пишущий механизм может быть основан на жидких чернилах или на подогреве писчиков, двигающихся по термобумаге. В других случаях гальванометры не обязаны быть столь сильными: контакт с бумагой происходит периодически, поэтому требуется меньше усилий на перемещение писчиков.
Системы зеркальных гальванометров используются для позиционирования в лазерных оптических системах. Обычно это механизмы высокой мощности с частотным откликом свыше 1 кГц.
В современных условиях аналого-цифровые преобразователи и приборы с цифровой обработкой сигналов и числовой индикацией величин заменяют гальванометры в качестве измерительных приборов, особенно в составе универсальных (авометров) и в механически сложных условиях работы.
Получение, хранение и обработка данных в компьютерных системах по гибкости значительно превышает все способы фиксации электрических сигналов самописцами на бумаге.
Зеркальные гальванометры также потеряли своё значение в системах развёртки, сначала с появлением электронно-лучевых устройств, а там, где необходимо, управление внешним световым потоком — с появлением эффективных пьезоэлектрических устройств и сред с управляемыми свойствами (например, жидких кристаллов). Однако на базе зеркальных гальванометров выпускаются устройства для отклонения луча лазера в лазерной технологии и установках для лазерных шоу (англ.).
Лектрический заряд
Эта работа отлично подойдёт для тех, кто начинает своё знакомство с разделом физики «Электростатика». Здесь вы узнаете о том, что такое электрический заряд, какие бывают заряды, как они взаимодействуют. Экспериментально исследуете процесс деления и переноса заряда. Познакомитесь с методами измерения заряда при помощи простейшего измерительного прибора – электроскопа.
Акон Кулона. Взаимодействие заряженных сфер
В этой работе у вас появится возможность экспериментально проверить один из двух фундаментальных законов электростатики – закон Кулона. Лабораторная установка позволяет количественно исследовать зависимость силы взаимодействия заряженных сфер как от расстояния, так и от величины электрического заряда. Для этого, в составе установки имеется регулируемый высоковольтный источник питания, особо чувствительный динамометр, прибор для измерения электрического заряда.
Акон Кулона. Метод зеркального заряда
Метод зеркального заряда (метод зеркальных отображений) – один из классических методов математической физики, применяемый, в частности, для расчета электростатических полей, ограниченных какой-либо проводящей поверхностью правильной формы. В данной работе этот метод используется для теоретического описания взаимодействия заряженного шара и заземленной плоскости. Для экспериментальной проверки применимости данного метода в составе лабораторной установки имеется высоковольтный источник напряжения для передачи проводящей сфере электрического заряда, прибор для измерения величины этого заряда и торсионный динамометр, необходимый для измерения силы взаимодействия сферы и проводящей плоскости.
Лектрическое поле конденсатора
Плоский конденсатор – одна из основных классических моделей в электростатике, фигурирующая в огромном количестве школьных задач различного уровня сложности. Конструкция конденсатора довольно проста: две параллельные проводящие пластины, пространство между которыми может быть заполнено каким – либо диэлектриком. В настоящей работе вам предлагается экспериментально исследовать зависимость напряженности электрического поля от напряжения и расстояния между пластинами, а также исследовать потенциал поля плоского конденсатора.
Акон Ома для участка цепи
Закон Ома, пожалуй, один из самых известных законов, изучаемых в школьном курсе физики, был эмпирически установлен немецким физиком Георгом Омом без малого 200 лет назад. В настоящей лабораторной работе у вас появится возможность повторить опыты Эрстеда и Ома, изучить принцип действия амперметра, вольтметра и омметра, исследовать зависимость сопротивления проводника от его длины.
Акон Ома для полной цепи. Правила Кирхгофа
Правила Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и их практических расчётов. Данная работа посвящена знакомству с методикой применения и экспериментальной проверкой правил Кирхгофа для расчета электрических схем различной сложности.
Ост Уитстона
Первая схема электрического моста, предназначенная для измерения сопротивления элементов цепи появилась вскоре после того, как Георг Ом экспериментальным путем открыл основной закон электротехники и научился вычислять сопротивление металлических проводников. Измерительный мост является электрическим аналогом рычажных весов, и в основе его работы лежит принцип сравнения с эталонным сопротивлением. В данной работе вы познакомитесь с принципом работы измерительного моста Уитстона и его основным элементом – реохордом. В качестве основного задания по результатам измерения сопротивления нескольких образцов проволок различной толщины предлагается вычислить удельное сопротивление константана (сплава меди никеля и марганца).
Ольт-амперные характеристики элементов электрических цепей
Зависимость силы тока, протекающего через элемент электрической цепи, от поданного на этот элемент напряжения – одна из основных характеристик, используемых при проектировании любых электроприборов. Данная лабораторная работа позволит познакомиться с тем, сколь разнообразными могут быть подобные зависимости, и сколь разными могут быть причины, такое разнообразие поясняющие. Вам предстоит исследовать вольт-амперные характеристики резистора, лампы накаливания, диода, светодиода, познакомиться с теорией протекания электрического тока в проводниках и полупроводниках.
Емпературная зависимости различных резисторов и диодов
В данной работе вы узнаете о том, каким образом изменение температуры влияет на электрические характеристики проводников и полупроводников и приборов на их основе. Ядром экспериментальной установки является термостат, позволяющий удерживать температуру исследуемых образцов в диапазоне 25-90 ̊С В качестве объектов изучения зависимости сопротивления резистивных элементов от температуры вам предлагается исследовать образцы медной проволоки, проволоки из сплава меди с никелем, углеродного и металлопленочного резисторов и двух термисторов различных типов. Для полупроводниковых приборов, в качестве образцов которых выступают диод и стабилитрон, исследуется температурная зависимость падения напряжения на элементе при постоянном токе.
Ольтамперные характеристики транзистора
Транзистор – основной элемент электронно-вычислительных систем. В современном процессоре количество процессоров измеряется миллиардами, а их размер – нанометрами. Данная работа посвящена знакомству с принципами работы транзистора и изучению вольт-амперных характеристик полупроводникового диода и транзистора.
Альванический элемент
Первый химический источник ЭДС, так называемый «Вольтов столб», представленный Алессандро Вольта в 1800 году, стал революционным изобретением и положил основу новой науке электротехнике. В данной работе у вас появится возможность окунуться в атмосферу этого открытия, собрать простейшую кислотную, щелочную и солевую ячейки, объединить их в батарею, соединив последовательно и параллельно, исследовать характеристики полученных схем и даже запитать от такой батареи простейший электроприбор.
Еостат и потенциометр
Переменное сопротивление – один из основных элементов в схемах современных электроприборов. Данная работа посвящена знакомству с основными способами включения такого сопротивления в цепь. В работе исследуются параметры цепи с включенным под нагрузкой потенциометром и реостатом. Рассматриваются и собираются схемы регулировки яркости светодиода при помощи реостата и регулировки частоты вращения вала электродвигателя при помощи потенциометра.
Оследовательное и параллельное соединение
Лабораторная работа посвящена экспериментальной проверке правила вычисления сопротивления при последовательном и параллельном соединении проводников. У ребят появится отличная возможность сделать первые шаги в электротехнике и самостоятельно собрать несколько схем соединения сопротивлений, увеличивая их сложность. Тех, кто успешно выполнит все задания, в конце работы ожидает интересная схема-задача, которую мы называем «полная неразбериха».
Енерация электрического тока
Работа посвящена изучению одного из трех видов электрических машин – генератора. На долю таких устройств приходится более 90% всей вырабатываемой на Земле электроэнергии. Рассматриваются четыре вида генераторов: генератор переменного тока с вращающимися магнитными полюсами постоянного магнита и неподвижным статором, генератор переменного тока с неподвижными магнитными полюсами постоянных магнитов и вращающимся якорем, генератор переменного и постоянного тока с возбуждением от внешнего источника. Исследуются их характеристики.
Ривая зарядки конденсатора
В этой работе вам предстоит экспериментально проверить теорию, описывающую экспоненциальный характер зависимости токов и напряжений от времени в процессе зарядки и разрядки конденсатора. Меняя ёмкость конденсатора и сопротивление цепи, вы сможете исследовать роль постоянной времени, являющейся важнейшей характеристикой таких элементов схем с переменным током, как, например, RC – фильтры.
Остовая схема измерения ёмкости и индуктивности
Измерительный мост – первое устройство, позволившее измерить величину электрического сопротивления в цепях постоянного тока. Оно появилось ещё в эпоху, когда единственным источником ЭДС в электрических схемах был гальванический элемент. Однако, оказалось, что общие принципы работы измерительного моста могут быть эффективно использованы и в цепях переменного тока. Не менее удивительно, что мостовая схема в таких цепях позволяет измерять не только омическое сопротивление резисторов, но и реактивное сопротивление элементов цепи. В настоящей работе вам предстоит, используя измерительный мост, генератор и обыкновенные акустические наушники, научиться измерять сопротивление резисторов, ёмкость конденсаторов и индуктивность катушек.
Епи с выпрямителями
Выпрямитель, это электрическая схема, предназначенная для преобразования электрического тока переменного направления в ток постоянного направления. В настоящей работе у вас есть возможность теоретически и экспериментально познакомиться с работой основных наиболее простых схем выпрямителей, построенных с использованием полупроводниковых элементов: однополупериодный выпрямитель, двухполупериодный выпрямитель, цепь со стабилитроном и умножитель напряжения.
Рансформатор
Данная работа позволяет подробно изучить работу электротрансформатора. Вам предстоит собрать схему и исследовать работу трансформатора в трех основных режимах: режим холостого хода, режим короткого замыкания и режим работы под нагрузкой, варьируя входное напряжение, число витков в катушках и тип сердечника и сравнивая полученный результат с теоретическим расчетом. Тех, кто успешно освоит эту часть работы, ждёт задание с «длинной линией».
LC-контур
Колебательный контур – очень важная часть любой современной радиоаппаратуры. В настоящей работе вы познакомитесь с тем, как ведут себя конденсатор и катушка индуктивности в цепях постоянного и переменного тока по отдельности и вместе, изучите реакцию, LC – цепи на одиночный импульс и периодический сигнал, познакомитесь с явлением резонанса и найдёте резонансную частоту колебательного контура. Важным с практической точки зрения станет исследование влияния качества и типа провода на передачу сигнала.
Адио
7 мая 1895 года, российский инженер Александр Попов продемонстрировал созданный им прибор для связи на расстоянии. Это изобретение стало одним из величайших в истории науки и техники, а 7 мая до сих пор отмечается в нашей стране как день радио. Настоящая работа посвящена знакомству с основными принципами радиосвязи. Вам предстоит, если, конечно, вы ещё не знакомы, познакомиться с такими незаменимыми спутниками любителя электроники, как двухлучевой осциллограф и генератор периодических сигналов, собрать и исследовать характеристики колебательного контура и простейшего АМ-радиопередатчика, и выйти, быть может, в свой первый самостоятельный радиоэфир.
Агнитное поле проводников с током
Впервые магнитное действие электрического тока было обнаружено в 1820 году датским физиком Хансом Кристианом Эрстедом. Эрстед обратил внимание на то, что стрелка магнитного компаса, установленная вблизи проводника, начинает отклоняться от своего естественного направления при пропускании через проводник электрического тока. В настоящей работе вам предстоит исследовать открытое эрстедом явление, используя более совершенный, нежели компас, прибор для обнаружения магнитного поля. Этот прибор – тесламетр, прибор для измерения индукции магнитного поля. Вам предстоит исследовать поле, создаваемое одним прямым проводником с током, парой проводников, по которым ток течет сонаправленно и противоположно направленно, поле на оси одного или нескольких круглых витков, поле соленоидов с различным числом витков.
Агнитное поле катушек Гельмгольца
Катушки Гельмгольца (или, как их ещё называют,кольца Гельмгольца) — две соосно расположенные одинаковые радиальные катушки, расстояние между центрами которых равно их среднему радиусу. Такая геометрия позволяет получить в центральной области промежутка между катушками однородное магнитное поле, что бывает весьма полезно в физических экспериментах, а также для калибровки датчиков магнитной индукции, намагничивания и размагничивания постоянных магнитов, размагничивания стальных заготовок, деталей и инструментов. В настоящей работе вам предстоит исследовать это поле при помощи специального прибора – тесламетра.
Агнитное поле Земли
Об удивительной способности стрелки компаса ориентироваться по направлению с севера на юг люди узнали эмпирически более двух тысяч лет назад. Однако, познать природу данного явления и исследовать магнитное поле Земли количественно удалось существенно позже. Тем не менее, вам, наверное, будет интересно узнать, что в задаче по измерению величины магнитного поля нам поможет как раз древнее изобретение человечества – магнитная стрелка, являющаяся основной деталью прибора под названием магнитометр. В отличие от обычного компаса, магнитометр снабжен шкалой и механизмом поворота оси вращения стрелки. Магнитометр устанавливается в центральную область колец Гельмгольца. Такой прибор позволяет измерять величину горизонтальной составляющей и угол склонения поля.
Лектромагнитная индукция
Эта лабораторная работа поможет вам ближе познакомиться с явлением электромагнитной индукции. Классический эксперимент, демонстрирующий возникновение электродвижущей силы на обмотках катушки, внутрь которой вводится полосовой магнит, дополняется возможностью измерения скорости движения магнита. На следующем этапе исследования место магнита занимает катушка, через которую пропускается постоянный ток. Такие эксперименты дают возможность напрямую исследовать зависимость ЭДС индукции от скорости изменения магнитного поля, и, тем самым, проверить справедливость закона Фарадея.
Зучение гистерезиса феромагнитных материалов
Целью данной работы является изучение магнитных свойств ферромагнетиков и знакомство с явлением магнитного гистерезиса. Вам предстоит собрать экспериментальную установку, включающую катушку с кольцевым сердечником из ферромагнетика. Важнейшим элементом установки является датчик Холла, имеющий форму плоского язычка и устанавливаемый в специальную щель в сердечнике трансформатора. Датчик обеспечивает запись кривой намагничивания для целого и набранного из пластин сердечников. Построенная по результатам эксперимента петля гистерезиса позволит определить коэрцитивную силу и остаточную намагниченность для исследуемых сердечников.