Электрический конденсатор

Сравнение между старой и новой системой обозначений

Старая системаНовая система
TA46422pF
TB777100nF
TC1333.3uF
TD28947uF

Рекомендации по выбору конденсаторов

  1. Тип конденсатора: Выберите конденсатор в зависимости от типа монтажа (поверхностный или объемный).

  2. Ёмкость: Обратите внимание на ёмкость конденсатора, она измеряется в фарадах.

  3. Пробивное напряжение: Учтите пробивное напряжение и длительность его приложения.

  4. Среднее время до отказа: Обратите внимание на среднее время до первого отказа и соответствующие напряжения.

Заключение

Выбор конденсаторов для электронных устройств крайне важен. Учитывайте не только стандартные параметры конденсаторов, но и их тип, применение и условия эксплуатации. Следите за маркировкой на конденсаторах, чтобы правильно выбирать их и обеспечивать надежную работу электроники.

Важность конденсаторов в цепи переменного тока

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Поэтому конденсатор целесообразно использовать лишь на частотах, на которых его реактивное сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Энергия конденсатора

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора вычисляется по формуле:

E = (C * U^2) / 2

где:

  • E – энергия
  • C – ёмкость конденсатора
  • U – напряжение (разность потенциалов) на обкладках конденсатора

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов, такие как сопротивление изоляции, стабильность ёмкости, потери и другие.

По виду диэлектрика различают:

  • Керамические конденсаторы
  • Полимерные конденсаторы
  • Слюдяные конденсаторы
  • Электролитические конденсаторы

Назначение конденсаторов

В зависимости от назначения можно разделить конденсаторы на общего и специального назначения. Конденсаторы общего назначения используются практически во всех видах аппаратуры. Специальные конденсаторы предназначены для выполнения определенных функций, таких как помехоподавление, импульсные нагрузки и другие.

Ёмкость и характеристики конденсаторов

Основной характеристикой конденсатора является его ёмкость, которая определяет способность конденсатора накапливать заряд. Реальная ёмкость конденсатора может изменяться в зависимости от различных факторов. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад, но существуют и более ёмкие конденсаторы.

Соединение конденсаторов

Для получения больших ёмкостей конденсаторы могут быть соединены параллельно. При этом общая ёмкость батареи параллельно соединенных конденсаторов равна сумме ёмкостей всех конденсаторов в цепи.

Таким образом, конденсаторы играют важную роль в электрических цепях переменного тока, обеспечивая накопление электрической энергии и выполняя различные функции в электронике.

Параллельное и последовательное соединение конденсаторов

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна:

[C_{\text{общ}} = \frac{1}{\frac{1}{C_{1}} + \frac{1}{C_{2}} + \cdots + \frac{1}{C_{n}}}]

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Характеристики конденсаторов

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.

КонденсаторЁмкостьМакс. напряжениеПлотность энергии
EPCOS B434512 000TBDTBD

Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным высвобождением.

Номинальное напряжение

Другой важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, при котором конденсатор может работать в заданных условиях в течение срока службы.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. Эксплуатационное напряжение на конденсаторе не должно превышать номинальное.

Современные конденсаторы имеют специальную конструкцию, чтобы избежать случаев разрушения без взрыва. Разрушение возможно из-за нарушения режима эксплуатации (температуры, напряжения, полярности) или старения. Если конденсатор имеет разорванную крышку, он требует замены.

Опасность разрушения (взрыв)

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). В современных компьютерах перегрев конденсаторов — частая причина выхода их из строя вследствие близкого расположения с источниками тепла, например, рядом с радиатором охлаждения.

Предотвращение взрывов

Чтобы уменьшить повреждения других деталей и травматизм персонала, в современных конденсаторах большой ёмкости устанавливают вышибной предохранительный клапан или выполняют надсечку корпуса. Это позволяет избежать взрыва корпуса и разбрасывания осколков.

Различия между электролитическими и танталовыми конденсаторами

В отличие от электролитических конденсаторов, взрывоопасность танталовых (оксиднополупроводниковых) конденсаторов связана с тем, что они содержат взрывчатую смесь из тантала и двуокиси марганца. Это приводит к возможности сильного взрыва, способного повредить не только сам конденсатор, но и соседнее оборудование.

Как предотвратить взрывы

Для предотвращения взрывов электролитических и танталовых конденсаторов необходимо:

  1. Ежегодно проводить проверку состояния и работы конденсаторов
  2. Использовать конденсаторы высокого качества с надежными защитными механизмами
  3. Избегать перегрева конденсаторов и близкого расположения с источниками тепла
  4. При обнаружении признаков старения или утечки заменять конденсаторы на новые

Все эти меры позволят снизить риск взрыва конденсаторов и обеспечить надежную работу оборудования.

Реальные конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлением и индуктивностью. С достаточной для практики точностью эквивалентную схему реального конденсатора можно представить как показано на рисунке, где все двухполюсники подразумеваются идеальными.

Эквивалентная схема реального конденсатора и некоторые формулы. C0 — собственная ёмкость конденсатора; Rd — сопротивление изоляции конденсатора; Rs — эквивалентное последовательное сопротивление; Li — эквивалентная последовательная индуктивность.

Зависимость модуля импеданса реального конденсатора от частоты и формула импеданса.

Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки и саморазряд

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением:

где — напряжение, приложенное к конденсатору; — ток утечки.

Из-за тока утечки, протекающего через слой диэлектрика между обкладками и по поверхности диэлектрика, предварительно заряженный конденсатор с течением времени теряет заряд (саморазряд конденсатора). Часто в спецификациях на конденсаторы сопротивление утечки определяют через постоянную времени саморазряда конденсатора, которая численно равна произведению ёмкости на сопротивление утечки:

где — время, за которое начальное напряжение на конденсаторе, неподключенном ко внешней цепи, уменьшится в e раз.

Хорошие конденсаторы с полимерными и керамическими диэлектриками имеют постоянные времени саморазряда, достигающие многих сотен тысяч часов.

Эквивалентное последовательное сопротивление — Rs

Эквивалентное последовательное сопротивление обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также учитывает потери в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор, вследствие поверхностного эффекта.

В большинстве практических случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение существенно для надёжности и устойчивости работы устройства. В электролитических конденсаторах, где один из электродов является электролитом, этот параметр при эксплуатации со временем деградирует вследствие испарения растворителя из жидкого электролита и изменения его химического состава, вызванного взаимодействием с металлическими обкладками, что происходит относительно быстро в низкокачественных изделиях («конденсаторная чума»).

Некоторые схемы (например, стабилизаторы напряжения) критичны к диапазону изменения ЭПС конденсаторов в своих цепях. Это связано с тем, что при проектировании таких устройств инженеры учитывают этот параметр в фазочастотной характеристике (ФЧХ) обратной связи стабилизатора. Существенное изменение со временем ЭПС применённых конденсаторов изменяет ФЧХ, что может привести к снижению запаса устойчивости контуров авторегулирования и даже к самовозбуждению.

Эквивалентная последовательная индуктивность

Эквивалентная последовательная индуктивность обусловлена в основном собственной индуктивностью обкладок и выводов конденсатора. Результатом этой распределенной паразитной индуктивности является превращение конденсатора в колебательный контур с характерной собственной частотой резонанса. Эта частота может быть измерена и обычно указывается в параметрах конденсатора либо в явном виде, либо в виде рекомендованной максимальной рабочей частоты.

Тангенс угла диэлектрических потерь

Тангенс угла диэлектрических потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности к реактивной при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (кельвин). ТКЕ определяется так:

где — изменение ёмкости, вызванное изменением температуры на .

Таким образом, изменение ёмкости от температуры (при не слишком больших изменениях температуры) выражается линейной функцией:

где — изменение температуры в °C или К относительно нормальных условий, при которых специфицировано значение ёмкости, — ёмкость при нормальных условиях.

TKE применяется для характеристики конденсаторов с практически линейной зависимостью ёмкости от температуры. Однако ТКЕ указывается в спецификациях не для всех типов конденсаторов.

Для конденсаторов, имеющих существенно нелинейную зависимость ёмкости от температуры и для конденсаторов с большими изменениями ёмкости от воздействия температуры окружающей среды в спецификациях нормируются относительное изменение ёмкости в рабочем диапазоне температур или в виде графика зависимости ёмкости от температуры.

Эквивалентная схема конденсатора, моделирующая диэлектрическую абсорбцию. После кратковременного закорачивания выводов конденсатора дополнительные виртуальные конденсаторы не успевают разрядиться, так как включены через виртуальные резисторы, затем перезаряжают основной эквивалентный конденсатор, что выражается в медленном нарастании напряжения на выводах конденсатора после кратковременного закорачивания.

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то оказывается, что напряжение на обкладках снова начинает появляться, как если бы мы разрядили конденсатор не до нуля. Это явление получило название диэлектрическая абсорбция (диэлектрическое поглощение). Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность этого эффекта зависит в основном от свойств диэлектрика конденсатора.

Подобный эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно сильный и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком (например, керамических и слюдяных) эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрической абсорбцией обладают конденсаторы с неполярными диэлектриками: тефлон (фторопласт), полистирол, полипропилен и т. п.

Особое внимание в связи с эффектом следует уделять измерительным цепям постоянного тока: прецизионным интегрирующим усилителям, устройствам выборки-хранения, некоторым схемам на переключаемых конденсаторах.

Многие керамические материалы, используемые в качестве диэлектрика в конденсаторах (например, титанат бария, обладающий очень высокой диэлектрической проницаемостью в не слишком сильных электрических полях) проявляют пьезоэффект — способность генерировать напряжение на обкладках при механических деформациях. Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведёт к возникновению электрических помех в устройствах, где использованы такие конденсаторы, при воздействии акустического шума или вибрации на конденсатор. Это нежелательное явление иногда называют «микрофонным эффектом».

Также подобные диэлектрики проявляют и обратный пьезоэффект — при работе в цепи переменного напряжения происходит знакопеременная деформация диэлектрика, генерирующая акустические колебания, порождающие дополнительные электрические потери в конденсаторе.

Конденсаторы с металлизированным электродом (бумажный и пленочный диэлектрик) обладают важным свойством самовосстановления электрической прочности после пробоя диэлектрика. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда.

Применение конденсаторов и их работа

Батарея конденсаторов 150 кВ 75 МВ·А на электрической подстанции

Конденсаторы находят применение практически во всех областях электротехники.

Обозначение конденсаторов на схемах

Обозначениепо ГОСТ 2.728-74 Описание

Конденсатор постоянной ёмкости

Поляризованный (полярный) конденсатор

Подстроечный конденсатор переменной ёмкости

Другие варианты обозначения различных конденсаторов на принципиальных электрических схемах

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·106 пФ = 1·10−6 Ф) и пикофарадах (1 пФ = 1·10−12 Ф), и в нанофарадах (1 нФ = 1·10−9 Ф). При ёмкости не более ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ × 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10—180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, то есть на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Сравнение конденсаторов постоянной ёмкости

Тип конденсатора Используемый диэлектрик Особенности/применения Недостатки

Конденсаторы с твёрдым органическим диэлектриком

Масляные конденсаторы переменного тока Промасленная бумага В основном разрабатывались для обеспечения очень больших ёмкостей для промышленного применения в цепях переменного тока, выдерживая при этом большие токи и высокие пиковые напряжения частотой силовой питающей сети. В их задачи входит пуск и работа электрических моторов переменного тока, разделение фаз, коррекция коэффициента мощности, стабилизация напряжения, работа с контрольным оборудованием и т. д. Ограничены низкой рабочей частотой, поскольку на высоких частотах имеют высокие диэлектрические потери.

Масляные конденсаторы постоянного тока Бумага или её комбинация с ПЭТ Разработаны для работы при постоянном токе для фильтрации, удвоения напряжения, предотвращения образования дуги, как проходные и разделительные конденсаторы При наличии пульсаций требуют уменьшения рабочего напряжения согласно предоставленным производителем графикам. Обладают бо́льшими размерами в сравнении с аналогами с полимерными диэлектриками.

Бумажные конденсаторы Бумага/пропитанная бумага Пропитанная бумага широко использовалась в старых конденсаторах. В качестве пропитки использовался воск, масло или эпоксидная смола. Некоторые подобные конденсаторы до сих пор применяются для работы при высоком напряжении, но в большинстве случаев теперь вместо них используют плёночные конденсаторы. Большой размер. Большая гигроскопичность, из-за чего они поглощают влагу из воздуха даже при наличии пластикового корпуса и пропитки. Поглощённая влага ухудшает их характеристики, повышая диэлектрические потери и понижая сопротивление изоляции.

Металлизированные бумажные конденсаторы Бумага Меньший размер, чем у бумажно-фольговых конденсаторов Подходят только для слаботочных применений. Вместо них стали широко применяться металлизированные плёночные конденсаторы.

Энергонакопительные конденсаторы Конденсаторная крафт-бумага, пропитанная касторовым маслом или схожей жидкостью с высокой диэлектрической постоянной, и пластинки из фольги Разработаны для работы в импульсном режиме с высоким током разряда. Лучше переносят изменение полярности напряжения, чем многие полимерные диэлектрики. Обычно применяются в импульсных лазерах, генераторах Маркса, для импульсной сварки, при электромагнитной формовке и иных задачах, требующих использования импульсов большой мощности. Имеют большой размер и массу. Их энергоёмкость значительно меньше, чем у конденсаторов, использующих полимерные диэлектрики. Не способны к самолечению. Отказ подобного конденсатора может быть катастрофичным из-за большого объёма накопленной энергии.

Полиэтилентерефталатные конденсаторы Полиэтилентерефталатная плёнка Меньше, чем бумажные или полипропиленовые конденсаторы со схожими характеристиками. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. ПЭТ конденсаторы почти полностью заменили бумажные для задач, где требуется работа с прямым (постоянным) током. Имеют рабочие напряжения вплоть до 60 киловольт при постоянном токе, а рабочую температуру до Обладают невысокой гигроскопичностью. Температурная стабильность ниже, чем у бумажных. Могут применяться при низкочастотном переменном токе, но непригодны при высокочастотном из-за чрезмерного нагрева диэлектрика.

Полиамидные конденсаторы Полиамид Рабочая температура до Высокое сопротивление изоляции, хорошая стабильность, малый тангенс угла потерь. Большие размеры и высокая цена.

Каптоновые конденсаторы Полиимидная плёнка марки Каптон Аналогичны ПЭТ, но обладают значительно более высокой рабочей температурой (вплоть до Дороже ПЭТ. Температурная стабильность ниже, чем у бумажных конденсаторов. Также могут применяться только при низкочастотном переменном токе, так как при высоких частотах происходит сильный нагрев диэлектрика.

Поликарбонатные конденсаторы Поликарбонат Имеют лучшее сопротивление изоляции, тангенс угла потерь и диэлектрическую адсорбцию в сравнении с полистирольными конденсаторами. Обладают лучшей влагостойкостью. Температурный коэффициент примерно Выдерживают полное рабочее напряжение на всём температурном диапазоне (от до Максимальная рабочая температура ограничена на уровне

Полисульфоновые конденсаторы Полисульфон Аналогичны поликарбонатным. Могут выдерживать полное номинальное напряжение на сравнительно высоких температурах. Поглощение влаги около что ограничивает их стабильность. Малая доступность и высокая стоимость.

Полипропиленовые конденсаторы Полипропилен Чрезвычайно низкий тангенс угла потерь, более высокая диэлектрическая прочность, чем у поликарбонатных и ПЭТ конденсаторов. Низкая гигроскопичность и высокое сопротивление изоляции. Могут использовать полоски фольги, металлизированную плёнку или их комбинации. Плёнка совместима с технологией самовосстановления, повышающей надёжность. Могут работать на высоких частотах, в том числе при большой мощности, например, для индукционного нагрева (часто вместе с водяным охлаждением), благодаря очень низким диэлектрическим потерям. При более высоких ёмкостях и рабочем напряжении, например от 1 до и напряжением до переменного тока, могут применяться как пусковые для работы с некоторыми типами однофазных электрических моторов. Более чувствительны к повреждениям от кратковременных перенапряжений или переполюсовке, чем пропитанные маслом бумажные конденсаторы.

Полистирольные конденсаторы Полистирол Отличные плёночные высокочастотные конденсаторы общего применения. Имеют отличную стабильность, высокую влагостойкость и малый отрицательный температурный коэффициент, позволяющий использовать их для компенсации положительного температурного коэффициента других компонентов. Идеальны для маломощных высокочастотных и прецизионных аналоговых задач. Максимальная рабочая температура ограничена Сравнительно большие по размеру.

Фторопластовые конденсаторы Политетрафторэтилен Отличные плёночные высокочастотные конденсаторы общего применения. Очень низкие диэлектрические потери. Рабочая температура до очень высокое сопротивление изоляции, хорошая стабильность. Используются в критичных задачах. Большой размер из-за низкой диэлектрической постоянной, более высокая цена в сравнении с другими конденсаторами.

Металлизированные полиэтилентерефталатные и поликарбонатные конденсаторы ПЭТ или Поликарбонат Надёжные и значительно меньшие по размеру. Тонкая металлизация может использоваться для придания им свойства самовосстановления. Тонкая металлизация ограничивает максимальный ток.

Конденсаторы с твёрдым неорганическим диэлектриком

Многоуровневые пластинчатые слюдяные конденсаторы Слюда Преимущества данных конденсаторов основаны на том, что их диэлектрик инертен. Он не изменяется со временем ни физически, ни химически, а также имеет хорошую температурную стабильность. Обладают очень высокой стойкостью к коронным разрядам. Без правильной герметизации подвержены влиянию влажности, что ухудшает их параметры. Высокая цена из-за редкости и высокого качества диэлектрика, а также ручной сборки.

Металлизированные или серебряные слюдяные конденсаторы Слюда Те же преимущества, в дополнение обладают большей устойчивостью к влаге. Более высокая цена.

Стеклянные конденсаторы Стекло Аналогичны слюдяным. Стабильность и частотные характеристики лучше, чем у слюдяных. Очень надёжные, очень стабильные, стойкие к радиации. Высокая цена.

Температурно-компенсированные керамические конденсаторы Смесь сложных соединений титанатов Дешёвые, миниатюрные, обладают превосходными высокочастотными характеристиками и хорошей надёжностью. Предсказуемое линейное изменение ёмкости относительно температуры. Имеются изделия, выдерживающие до Изменение ёмкости при различном приложенном напряжении, частоте, подвержены старению.

Керамические конденсаторы с высокой диэлектрической постоянной Диэлектрики, основанные на титанате бария Миниатюрнее температурно-компенсированных конденсаторов из-за большей диэлектрической постоянной. Доступны для напряжений вплоть до 50 киловольт. Обладают меньшей температурной стабильностью, ёмкость значительно изменяется при различном приложенном напряжении.

Алюминиевые электролитические конденсаторы Оксид алюминия Огромное отношение ёмкости к объёму, недорогие, полярные. В основном применяются как сглаживающие и питающие конденсаторы в источниках питания. Наработка на отказ конденсатора с максимально допустимой рабочей температурой при расчёте составляет до 50 000 часов при температуре Высокие токи утечки, большое эквивалентное последовательное сопротивление и индуктивность ограничивают возможность использования их на высоких частотах. Имеют низкую температурную стабильность и плохие отклонения параметров. Могут взорваться при превышении допустимых параметров и/или перегреве, при приложении обратного напряжения. Максимальное напряжение около 500 вольт.

Танталовые конденсаторы Оксид тантала Большое отношение ёмкости к объёму, малый размер, хорошая стабильность, большой диапазон рабочих температур. Широко используются в миниатюрном оборудовании и компьютерах. Доступны как в полярном, так и неполярном исполнении. Твёрдотельные танталовые конденсаторы имеют намного лучшие характеристики по сравнению с имеющими жидкий электролит. Дороже алюминиевых электролитических конденсаторов. Максимальное напряжение ограничено планкой около Взрываются при превышении допустимого тока, напряжения или скорости нарастания напряжения, а также при подаче напряжения неправильной полярности.

Твердотельные конденсаторы Оксид алюминия, оксид тантала Вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ около 50 000 часов при температуре ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются. Дороже обычных. При срок службы как у обычных электролитических. Рабочие напряжения до

Конденсаторы с двойным электрическим слоем

Конденсаторы с двойным электрическим слоем (ионисторы) Тонкий слой электролита и активированный уголь Огромная ёмкость относительно объёма, маленький размер. Доступны номиналы в сотни фарад. Обычно используются для временного питания оборудования при замене батарей. Могут заряжаться и разряжаться бо́льшими токами, чем батареи, имеют очень большое число циклов заряд-разряд. Полярные, имеют низкое номинальное напряжение (вольт на конденсаторную ячейку). Группы ячеек соединяются последовательно для повышения общего рабочего напряжения, при этом обязательно применение устройств для балансировки напряжений. Относительно высокая стоимость, высокое эквивалентное последовательное сопротивление (малые разрядные токи), большие токи утечки.

12 пФ, 20 кВ вакуумный конденсатор постоянной ёмкости с урановым стеклом у места входа в колбу выводов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *