Сходные по строению функциям и происхождению клетки образуют

Сходные по строению функциям и происхождению клетки образуют

Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани.

Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм:

У растений различают 6 видов тканей: образовательную, покровную, основную, опорную, проводящую и выделительную.

Основные положения современной клеточной теории

Основная ткань состоит из живых клеток и образует основу всех органов растения.

В зависимости от функции она подразделяется на фотосинтезирующую и запасающую.

Клетки фотосинтезирующей ткани содержат хлоропласты. В них осуществляется фотосинтез. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

Запасающая ткань плодов, семян, стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ, которые необходимы прежде всего многолетним растениям.

Часть клеток основной ткани служит для запасания воды. Водоносная ткань содержится в основном в стеблях и листьях растений пустынных мест обитания и солончаков, например в стеблях кактусов или листьях алоэ.

Воздухоносная ткань рыхлая. У нее хорошо развиты межклеточные пространства (межклетники), в которые проникает воздух. Особенно хорошо они сформированы у растений, произрастающих в воде (водные и болотные) и на глинистой почве.

По воздухоносным межклетникам кислород доставляется к тем частям растения, связь которых с атмосферой затруднена.

Сходные по строению функциям и происхождению клетки образуют

Основная ткань (фотосинтезирующая и запасающая)

Сходные по строению функциям и происхождению клетки образуют

Образовательный портал для подготовки к экзаменам

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Вопрос — ответ

Решения прошедшего ЕГЭ по математике. Восток

Что сроч­но пов­то­рить к зав­траш­не­му ЕГЭ рус­ско­му язы­ку

Обновлённая панель инструментов

Беседы Решу ЕГЭ по подготовке к ЕГЭ

Решение досрочных ЕГЭ по всем предметам

Обновленный поиск заданий по ключевым словам

Новый сервис: можно исправить ошибки!

Разместили актуальные шкалы ЕГЭ  — 2023

Учителю: обновленный классный журнал

Новый сервис: ссылка, чтобы записаться к учителю

Решения досрочных ЕГЭ по математике

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Версия для печати и копирования в MS Word

Сходные по строению функциям и происхождению клетки образуют

Сходные по строению, функциям и происхождению клетки образуют

3) системы органов

Ткань  — это группа клеток, сходная по строению и выполняемым функциям.

Раздел кодификатора ФИПИ: 5.1 Ткани. Стро­е­ние и жиз­не­де­я­тель­ность ор­га­нов и си­стем ор­га­нов: пи­ще­ва­ре­ния, ды­ха­ния, вы­де­ле­ния

О проекте · Редакция · Правовая информация · О рекламе

И растительные, и животные клетки являются эукариотическими клетками. Это значит, что и у тех, и у других есть все те сходные признаки, отличающие эукариотические клетки от прокариотических. Главное, что и выделяет эукариот, это наличие четко выделенного ядра.

Для клеток растений и животных будет и общность метаболических процессов. И у растительной, и у животной клетки ведущий тип метаболизма – аэробный. Существует конечно и анаэробные пути, ярчайший тому пример – гликолиз, однако энергетически путь не очень выгоден.

И у растений, и у животных хорошо развиты органеллы, которые решают свои задачи, тем самым происходит разделение обязанностей.

Координатором всех процессов растительных и животных клеток является ядро. Именно в закодирована генетическая информация, которая организована в хромосомы. Само же ядро покрыто ядерной мембраной. Количество хромосом у разных видов различается, однако принцип их организации схож.

В клетках растений и животных синтез РНК и белка разделено территориально: РНК синтезируется в ядре, а белок в цитоплазме.

Цитоплазма высокоструктурирован­а. Имеется цитоскелет. Клетки растений и животных способны к эндоцитозу и экзоцитозу.

Для растительных и животных клеток принципиально важно количество хромосом. Поэтому деление у них четкое и последовательное. Клетки делятся митозом или мейозом.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 марта 2020 года; проверки требуют 24 правки.

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.

Сходные по строению функциям и происхождению клетки образуют

Сходные по строению функциям и происхождению клетки образуют

Раковые клетки человека HeLa. Ядро (особенно ДНК) подсвечено голубым цветом. Клетки в центре и справа находятся в интерфазе. Клетка слева находится в процессе митоза.

Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838—1839 г.). Рудольф Вирхов позднее (1858 г.) дополнил её важнейшим положением «всякая клетка происходит от другой клетки».

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Клеточная теория неоднократно дополнялась и редактировалась.

Растительная и животная клетка

Сходные по строению функциям и происхождению клетки образуют

Всего получено оценок: 211.

Обновлено 19 Ноября, 2021

Основой любого живого организма является клетка. Она способна к самовоспроизведению и регенерации, несёт в себе генетическую информацию, обеспечивает важные обменные процессы. Клетки характерны для животных и растений. Их объединяют общие свойства и строение, но при этом каждая из них обладает уникальными особенностями. Различия растительной и животной клетки лежат в основе удивительного многообразия живого мира нашей планеты.

Сходства в строении растительной и животной клетки

Каждая клетка, независимо от своего происхождения, включает в себя стандартный набор органелл, играющих ключевую роль в процессах жизнедеятельности самой клетки. К таким органеллам относят:

Сходные по строению функциям и происхождению клетки образуют

Рис. 1. Строение животной и растительной клетки.

Принципиальное сходство в особенностях строения и молекулярного состава клеток растений и животных указывает на родство и единство их происхождения. Отличаться они стали в ходе эволюции, под воздействием разных сред обитания и образа жизни.

Сравнительная характеристика клеток

Помимо общих признаков, растительные и животные клетки имеют ряд существенных отличий в строении и выполняемых функциях.

Главное отличие растительных и животных клеток заключается в их способе питания. Клетки растений способны синтезировать органические вещества из неорганических за счёт энергии солнечного света в процессе фотосинтеза. Источником энергии для животных клеток служат органические вещества, поступающие вместе с пищей.

Сходные по строению функциям и происхождению клетки образуют

Рис. 2. Схема процесса фотосинтеза.

Отличие растительной клетки от животной можно кратко подать в виде таблицы, которая пригодится на уроке биологии в 10 классе.

Сходные по строению функциям и происхождению клетки образуют

Рис. 3. Деление растительной и животной клетки.

Сходные по строению функциям и происхождению клетки образуют

Что мы узнали?

Растительная и животная клетки имеют много общего во внутреннем строении, но принципиально отличаются способами питания и деления, наличием тех или иных органелл. Сравнение растительной и животной клетки позволяет убедиться в том, что они имеют общее происхождение.

Тест по теме

Чтобы попасть сюда – пройдите тест.

Оценка доклада

А какая ваша оценка?

Многообразие типов клеток появилось в растительном мире в длительном процессе эволюции (от лат. эволютио – «развертывание») – изменении во времени. У первых организмов Земли все клетки были почти одинаковыми. Позднее появились водоросли, мхи, папоротниковидные растения. У этих растений клетки имеют специфическое строение. Поэтому можно достаточно точно определить, растениям какой группы они принадлежат. Однако общее строение клетки у всех растений примерно одинаково.

Клетки с одинаковыми свойствами образуют у растений хорошо различимые группы. Одни группы обеспечивают рост растения, другие – питание, третьи – проведение веществ в организме.

Группы клеток, сходных по строению, функциям и имеющих общее происхождение, называют

В некоторых тканях клетки лежат очень близко друг к другу, в других – рыхло. Промежутки, образующиеся между клетками, называют межклеточными пространствами (или межклетниками). Не только клетки, но и межклетники входят в состав ткани. У высших растений различают ткани: образовательные, основные (фотосинтезирующие и запасающие), покровные, проводящие, механические.

Сходные по строению функциям и происхождению клетки образуют

Образовательная ткань состоит из клеток, которые способны делиться в течение всей жизни растения. Клетки здесь лежат очень близко друг к другу и постоянно делятся. Благодаря делению они образуют множество новых клеток, обеспечивая тем самым рост растения в длину и толщину. Появившиеся в ходе деления образовательных тканей клетки затем преобразуются в клетки других тканей растения.

Основная ткань выполняет такие функции в организме растения, как создание и накопление веществ. Например, в основной ткани находится пигмент хлорофилл, а значит, создается органическое вещество и запасается энергия солнечного излучения. Ткань, в которой образуются (синтезируются) органические вещества, преимущественно находится в мякоти листа.

Сходные по строению функциям и происхождению клетки образуют

Ткани, в клетках которых накапливаются запасные вещества, называют запасающими тканями. Пример запасающих тканей – мякоть плодов.

Рассматривая клетки листа элодеи, мы познакомились с примером фотосинтезирующей ткани. В прозрачной цитоплазме клеток этой ткани так много хлоропластов, что порой трудно рассмотреть ядро.

Запасающие и фотосинтезирующие ткани объединяют в одну группу основных тканей, т.к. они действительно обладают сходными функциями – создания и накопления веществ.

Покровная ткань защищает снаружи все органы растения. Клетки покровной ткани могут быть плотно сомкнутыми между собой. Например, в кожице, которая покрывает листья и молодые побеги, эти клетки с очень тонкой, прозрачной клеточной оболочкой легко пропускают солнечный свет в глубь растения. В корнях и стеблях оболочки клеток покровной ткани (пробки) могут опробковевать. Покровная ткань защищает растение от высыхания, перегрева и от механических повреждений.

Сходные по строению функциям и происхождению клетки образуют

Проводящая ткань осуществляет передвижение растворенных питательных веществ по растению. У многих высших растений она представлена проводящими элементами (сосудами, трахеидами и ситовидными трубками). В стенках проводящих элементов есть поры и сквозные отверстия, облегчающие передвижение веществ от клетки к клетке.

Проводящая ткань образует в теле растения непрерывную разветвленную сеть, соединяющую все его органы в единую систему – от тончайших корешков до молодых побегов, почек и кончиков листа.

Механическая ткань образована клетками с очень прочными оболочками. Благодаря ей растения могут противостоять большим механическим нагрузкам (например, переносить раскачивание ствола порывами ветра, удерживать тонкими стеблями и ветвями огромные кроны деревьев).

Сходные по строению функциям и происхождению клетки образуют

Таким образом, ткани растений выполняют различные функции, они тесно взаимодействуют друг с другом, обеспечивая существование и развитие организма.

Разнообразие тканей обусловлено их различными функциями и особенностями клеток, входящих в них.

Покровная ткань

Покровная ткань формируется на поверхности органов. Она представлена кожицей, пробкой и коркой. Защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды.

Клетки кожицы — эпидермис — образуются на всех молодых органах растений. Эпидермис обеспечивает газообмен, испарение, всасывание, предохраняет органы растений от высыхания.

Но для зимующих растений это ненадежная защита. Вместо него перед наступлением зимы образуется пробка. Эта многослойная ткань состоит из мертвых, плотно прилегающих друг к другу клеток. Она защищает растения.

Корка — это наружная часть коры. Как и пробка, она состоит из мертвых клеток и защищает стволы и ветви от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами, объедания животными.

Сходные по строению функциям и происхождению клетки образуют

Мужики, клеточная теория, элементы, вода

Гук открыл клетки. Левенгук открыл живые клетки (сперматозоиды, эритроциты, инфузории, бактерии). Броун открыл ядро. Шлейден и Шванн вывели первую клеточную теорию («Все живые организмы на Земле состоят из клеток, сходных по строению»). Вирхов добавил положение «Клетка происходит только от клетки».

1. Все живые организмы на Земле состоят из клеток, сходных по строению,
химическому составу и функционированию. Это говорит о родстве (общем происхождении) всех живых организмов на Земле (о единстве органического мира).

2. Клетка является:

3. Все новые дочерние клетки образуются из уже существующих материнских клеток путем деления.

4. Рост и развитие многоклеточного организма происходит за счет роста и размножения (путем митоза) одной или нескольких исходных клеток.

Макроэлементы

1. Благодаря маленьким дипольным молекулам вода является лучшим растворителем для полярных (гидрофильных) веществ. В растворенном состоянии вещества транспортируются по организму и очень быстро реагируют между собой.
2. Вещества, на поверхности которых нет полных или частичных зарядов (гидрофобные), не могут взаимодействовать с молекулами воды, вода их выталкивает (жир, бензин). На этом основаны строение и работа биологических мембран.
3. Вода обладает аномально высокой теплоемкостью (может поглотить много тепла и при этом почти не нагреться). За счет этого она защищает клетку от резких перепадов температуры.
4. Вода, как и все жидкости, несжимаема, обеспечивает опору для клеток (тургор) и целых организмов (гидроскелет).

Дополнительные материалы

ЗАДАНИЯ ЧАСТИ 2 ЕГЭ ПО ЭТОЙ ТЕМЕ

Задания части 1

Выберите один, наиболее правильный вариант. Какой метод позволяет избирательно выделять и изучать органоиды клетки
1) окрашивание2) центрифугирование3) микроскопия4) химический анализ

Выберите один, наиболее правильный вариант. В связи с тем, что в любой клетке происходит питание, дыхание, образование продуктов жизнедеятельности, ее считают единицей
1) роста и развития2) функциональной3) генетической4) строения организма

Выберите один, наиболее правильный вариант. Клетку считают единицей роста и развития организмов, так как
1) она имеет сложное строение2) организм состоит из тканей3) число клеток увеличивается в организме путем митоза4) в половом размножении участвуют гаметы

Выберите один, наиболее правильный вариант. Клетка – единица роста и развития организма, так как
1) в ней имеется ядро2) в ней хранится наследственная информация3) она способна к делению4) из клеток состоят ткани

Выберите один, наиболее правильный вариант. Эритроциты, помещенные в физиологический раствор
1) набухают и лопаются
2) остаются без внешних изменений
3) сморщиваются
4) слипаются друг с другом

Выберите один, наиболее правильный вариант. Поступление воды в растительную клетку происходит в процессе
1) осмоса
2) фагоцитоза
3) пиноцитоза
4) активного транспорта

КЛЕТОЧНАЯ ТЕОРИЯ ПОЛОЖЕНИЯ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Укажите формулировку одного из положений клеточной теории
1) Оболочка грибной клетки состоит из углеводов2) В клетках животных отсутствует клеточная стенка3) Клетки всех организмов содержат ядро4) Клетки организмов сходны по химическому составу5) Новые клетки образуются путем деления исходной материнской клетки

2. Выберите три варианта. Какие положения содержит клеточная теория?
1) Новые клетки образуются в результате деления материнской клетки2) В половых клетках содержится гаплоидный набор хромосом3) Клетки сходны по химическому составу4) Клетка – единица развития всех организмов5) Клетки тканей всех растений и животных одинаковы по строению6) Все клетки содержат молекулы ДНК

3. Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Какие из перечисленных положений относятся к современной клеточной теории?
1) Все организмы и вирусы состоят из клеток.
2) Растения и животные состоят из клеток.
3) Клетка – это структурно-функциональная единица живого, представляющая собой элементарную живую систему.
4) Химический состав и строение структурных единиц всех живых организмов сходны.
5) Сходное клеточное строение организмов, населяющих Землю, свидетельствует о единстве их происхождения.
6) Клетки возникают путём новообразований из неклеточного вещества.

КЛЕТОЧНАЯ ТЕОРИЯ ВЫВОДЫ
1. Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о
1) биогенной миграции атомов2) родстве организмов3) происхождении растений и животных от общего предка4) появлении жизни на Земле около 4,5 млрд. лет назад5) сходном строении клеток всех организмов6) взаимосвязи живой и неживой природы

2. Выберите три варианта. Основные положения клеточной теории позволяют сделать выводы о
1) влиянии среды на приспособленность2) родстве организмов3) происхождении растений и животных от общего предка4) развитии организмов от простого к сложному5) сходном строении клеток всех организмов6) возможности самозарождения жизни из неживой материи

3. Выберите три варианта. Сходное строение клеток растений и животных – доказательство
1) их родства2) общности происхождения организмов всех царств3) происхождения растений от животных4) усложнения организмов в процессе эволюции5) единства органического мира6) многообразия организмов

4. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. Основные положения клеточной теории позволяют сделать вывод о
1) биогенной миграции атомов
2) родстве организмов
3) происхождении растений и животных от общего предка
4) появлении жизни на Земле около 4,5 млрд. лет назад
5) сходном строении клеток всех организмов

МУЖИКИ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В разработку клеточной теории свой вклад внесли:
1) Опарин2) Вернадский3) Шлейден и Шванн4) Мендель5) Вирхов

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Основные постулаты клеточной теории сформулировали
1) Р. Гук
2) Т. Шванн
3) М. Шлейден
4) Р. Вирхов
5) А. Левенгук
6) Ч. Дарвин

Установите правильную последовательность этапов развития цитологии. Запишите соответствующую последовательность цифр.
1) изобретение электронного микроскопа
2) открытие рибосом
3) изобретение светового микроскопа
4) утверждение Р. Вирхова о появлении каждой клетки от клетки
5) появление клеточной теории Т. Шванна и М. Шлейдена
6) первое употребление термина «клетка» Р. Гуком

ЭЛЕМЕНТЫУстановите соответствие между химическими элементами и группами, к которым они принадлежат: 1) макроэлементы, 2) микроэлементы, 3) ультрамикроэлементы. Запишите цифры 1, 2, 3 в порядке, соответствующем буквам.
А) фосфор
Б) золото
В) йод
Г) медь
Д) кальций
Е) ртуть

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. К макроэлементам относятся:
1) Йод
2) Вода
3) Кислород
4) Сера
5) Фтор

Из предложенного списка химических элементов выберите органогены. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.
1) кислород
2) азот
3) магний
4) хлор
5) йод

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие из перечисленных ниже элементов являются органогенными?
1) цинк
2) углерод
3) железо
4) медь
5) водород
6) азот

Все перечисленные ниже признаки, кроме двух, можно использовать для описания значения ионов кальция. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) входят в состав хлорофилла
2) влияют на реакцию свёртывания крови
3) обеззараживают пищу
4) входят в состав костной ткани
5) инициируют мышечное сокращение

Установите соответствие между характеристиками и химическими элементами: 1) фосфор, 2) калий, 3) железо. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) участвует в проведении нервных импульсов
Б) входит в состав костной ткани
В) входит в состав билипидного слоя
Г) входит в состав нуклеиновых кислот
Д) участвует в транспорте кислорода

ВОДАВыберите три варианта. Какие особенности строения и свойств воды определяют её функции в клетке?
1) способность образовывать водородные связи
2) наличие в молекулах макроэргических связей
3) полярность молекулы
4) высокая теплоёмкость
5) способность образовывать ионные связи
6) способность выделять энергию при расщеплении

Выберите из перечисленных ниже функций две, которые выполняет вода. Запишите цифры, под которыми они указаны.
1) энергетическая
2) каталитическая
3) cтруктурная
4) гормональная
5) транспортная

Все перечисленные ниже признаки, кроме двух, можно использовать для описания физических свойств воды. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) обладает высокой теплоёмкостью
2) находится в трёх агрегатных состояниях
3) максимальную плотность имеет при 0 °С
4) не проводит электрический ток
5) обладает высоким поверхностным натяжением

1665 год — английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы — итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов — описал бактерий и протистов (инфузорий).

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

Первая половина XIX века

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Ф. Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию (сопоставимость) клеток растений и клеток животных Пуркинье не смог:

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Он смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории — соответствие клеток растений и элементарных структур животных — была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка — это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию образования клеток из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911) и чешским гистологом Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская выдвинула теорию (в дальнейшем полностью опровергнутую) о том, что в онтогенезе клетки могут развиваться из неклеточного живого вещества.

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Проводящая ткань

Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. Она состоит из двух частей.

Одна часть — ксилема, или древесина, — обеспечивает восходящий поток и доставляет воду и минеральные соли от корней в надземную часть растения.

Клетки древесины представляют собой полые трубки (сосуды) с одеревеневшими мертвыми стенками. В сосудах имеются отверстия, через которые вдоль всего сосуда осуществляется движение жидкости.

Другая часть — флоэма, или луб, — обеспечивает нисходящий поток, т. е. проведение образовавшихся в листьях органических веществ в подземные органы. В состав луба входят ситовидные трубки и клетки-спутницы. Луб и древесина расположены в стебле, корне, жилках листьев.

Сходные по строению функциям и происхождению клетки образуют

Проводящие ткани: Ксилема и Флоэма.

Органические вещества, образованные в листьях, доставляются к стеблям, корням, точкам роста, плодам, семенам по ситовидным трубкам. Клетки ситовидных трубок живые.

В поперечных перегородках члеников ситовидных трубок имеется большое количество мелких отверстий, как в сите.

У растений элементы проводящей, опорной и запасающей тканей образуют проводящие, или сосудисто-волокнистые, пучки. Они хорошо видны в листьях в виде жилок, распространены в стебле, корнях и плодах.

Сходные по строению функциям и происхождению клетки образуют

Осенью отверстия перегородок ситовидных трубок затягиваются мозолистым веществом, и ток органических веществ по трубке прекращается. Растение впадает в состояние покоя.

Весной мозолистое вещество растворяется, и ток по ситовидным трубкам возобновляется. Проводящая ткань осуществляет связь между корнем и побегом.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

“Растительные ткани”

Проверочное тестовое задание включает в себя вопросы с одним и несколькими правильными ответами

Образовательная ткань

Образовательная ткань находится на верхушке побега и на верхушке корня. Ее клетки плотно прилегают друг к другу. У них тонкие оболочки. За счет деления клеток растения растут.

Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев — функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей.

Со временем клетки утрачивают способность делиться. Они становятся клетками постоянных тканей, таких как покровные, основные, проводящие и др.

Сходные по строению функциям и происхождению клетки образуют

Опорная или механическая ткань

Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры Она находится в стеблях, листьях и плодах растений. Опорная ткань придает упругость и прочность всем органам растений.

Поэтому при сильном ветре не ломаются хрупкие стебли, не разрываются большие листовые пластинки и листья не срываются с деревьев.

Сходные по строению функциям и происхождению клетки образуют

Опорная (механическая) ткань

В мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса, персика встречаются каменистые клетки. Они тоже являются опорной тканью.

В органах молодых растений опорная ткань развивается не сразу. Например, косточки незрелых фруктов — сливы, вишни, абрикоса — мягкие, беловатого цвета. По мере созревания плодов их оболочка темнеет и становится твердой.

Семена от повреждений защищает опорная ткань, состоящая сначала из живых клеток. Позже они теряют цитоплазму, стенки утолщаются и древеснеют.

В размещении механической ткани в растительных органах существует особая закономерность. Изучая ее, человек учится у растений создавать прочные, экономичные, радующие глаз здания, башни, мосты, которые к тому же будут естественно вписываться в окружающую среду.

Положения клеточной теории Шлейдена — Шванна

Основы клеточной теории, окончательно заложенные Теодором Шванном, можно сформулировать следующим образом:

В 1855 г. Рудольф Вирхов применил клеточную теорию в медицине, дополнив её следующими важными положениями:

Выделительная ткань

Известно, что у растений нет специальных выделительных органов, как у животных. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски, нектарники и т. д.

Растения выделяют ароматические и сахаристые вещества, привлекающие насекомых-опылителей. Эфирные масла защищают растения от поедания травоядными животными.

Сходные по строению функциям и происхождению клетки образуют

Сходные по строению функциям и происхождению клетки образуют

Строение растительной клетки

Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани. Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм. Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей. Покровная ткань защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды. Основная ткань состоит из живых клеток и образует основу всех органов растения. Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры.
Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. У растений нет специальных выделительных органов. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски.

Биологический русско-английский глоссарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *