Теоретическое открытие электромагнитных волн ученый

Люди знакомы с электрическими и магнитными явлениями еще со времен античности. Древние люди видели молнию и имели знания о магнитах, которые притягивали ряд металлов. Багдадская батарейка, придуманная 4 тысяч лет назад, считается одним свидетельств того, что люди были знакомы с электричеством. Тем не менее, до начала девятнадцатого века электричество и магнетизм рассматривались отдельно. Так кто и когда создал теорию электромагнитного поля?

Дата создания теории электромагнитного поля

Датскому физику Эрстеду удалось установить, что проводник, по которому перемещается электрический ток, провоцирует отклонение указателя магнитного компаса, расположенного около проводника. Это произошло в 1819 году. Благодаря этому был сделан вывод о том, что между магнетизмом и электричеством есть определенная взаимосвязь.

Французский ученый Ампер в 1824 году описал взаимодействие проводника тока и магнитного поля. В 1831 году английскому ученому Фарадею удалось экспериментальным путем выявить и математически описать явления электромагнитной индукции. В 1864 году Максвелл создал теорию электромагнитного поля.

Теория Максвелла

Этот ученый создал теорию, по которой электрическое и магнитное поля считаются элементами одного целого. Причем они взаимосвязаны друг с другом. Эти составляющие считаются компонентами электромагнитного поля. Учение Максвелла с общей точки зрения позволяло объяснить результаты всех предыдущих исследований в сфере электродинамики.

Помимо этого, из теории Максвелла вытекало, что любые перемены в электромагнитном поле служат порождением электромагнитных волн, которые распространялись в диэлектрической среде. Причем это происходило с конечной скоростью. На этот показатель влияет магнитная и диэлектрическая проницаемость среды.

Теоретическое открытие электромагнитных волн ученый

В условиях вакуума теоретическое значение скорости было приближено к экспериментальным оценкам скорости света, которые удалось получить к тому моменту. Это давало Максвеллу возможность выдвинуть гипотезу, что свет представляет собой одно из проявлений электромагнитных волн. Через некоторое время теория ученого нашла подтверждение.

Уникальные эксперименты на пути к формированию теории

Открытие электромагнитных волн считается прекрасным примером взаимодействия между теоретическими знаниями и экспериментальными исследованиями. Он демонстрирует, как физика объединяет совершенно разнородные на первый взгляд свойства – магнетизм и электричество. В них удалось обнаружить разные стороны единого физического явления – электромагнитного взаимодействия.

С теоретической точки зрения существование электромагнитных волн предсказал Максвелл. Есть предположение, что впервые сведения об этом появились в 1862 году в работе ученого, которая называлась «О физических силовых волнах».

Теоретическое открытие электромагнитных волн ученый

Исследователь с большим уважением перевел на математический язык картинки Фарадея, которые описывали магнитные и электрические явления. Также он проанализировал и упорядочил достижения других исследователей.

К сожалению, Максвелл умер слишком рано и не застал достоверное экспериментальное подтверждение своих расчетов. Опыты в сфере электромагнетизма провел Генрих Герц. Через 20 лет после создания теории Максвелла ученый выполнил серию опытов. Это позволило ему показать создание и прием электромагнитных волн.

Влияние на открытие столпов науки

Сам термин «поле» первым ввел Фарадей. Это произошло в 1845 году во время проведения исследований диамагнетизма. Именно этому ученому удалось выявить эффект слабого отталкивания магнитом определенных веществ.

Теоретическое открытие электромагнитных волн ученый

Изначально Фарадей воспринимал поле только как вспомогательный термин. По сути, он считал его сеткой координат, которую образовывали магнитные силовые линии. Она применялась для обозначения характера движения тел около магнитов. К примеру, кусочки диамагнитных веществ – в частности, висмута, передвигались из зон концентрации силовых линий в область их разрежения и размещались перпендикулярно по отношению к линиям.

Чуть позже в 1851-1852 годах термин «поле» стал эпизодически применять английский физик Уильям Томсон. Он сделал это при математическом обозначении результатов ряда опытов Фарадея.

Впоследствии Генрих Рудольф Герц экспериментальным способом подтвердил электромагнитную теорию света Максвелла и привел доказательства наличия электромагнитных волн.

Теоретическое открытие электромагнитных волн ученый

В 1888 году появилась работа Герца «Об электродинамических волнах в воздухе и их отражении». После ее публикации физики по всему миру начали повторять опыты Герца. Это привело к широкому распространению такого понятия, как «волны Герца».

Итоговая работа цикла «О лучах электрической силы», которая была представлена ученым в 1888 году на собрании Берлинской академии наук, стала настоящей сенсацией. Именно этот год считают датой открытия электромагнитных волн. Герцу удалось подтвердить теорию, созданную Максвеллом, экспериментальным способом.

Применение открытия в радио и телеграфии

Изобретение радио и телеграфа было бы невозможным без создания теории электромагнитного поля. В 1845 году английский ученый Майкл Фарадей сделал важное открытие, которое отразилось на дальнейшем развитии науки. Исследователю удалось установить существование электромагнитного поля.

Теоретическое открытие электромагнитных волн ученый

Через 20 лет английский ученый Джеймс Максвелл разработал теорию электромагнитного поля и определил, что скорость электромагнитных волн совпадает со скоростью света. Его исследования имели большое значение для развития физики и стали основой для создания теории относительности.

Еще через 20 лет Герц сконструировал генератор и резонатор электромагнитных колебаний. Благодаря этому ему удалось показать наличие электромагнитных волн, распространяющихся в свободном пространстве. Можно сказать, что это устройство и стало прообразом радио. Однако прибор Герца был способен принимать и передавать электромагнитные сигналы на незначительном расстоянии – оно составляло не больше нескольких метров.

Радиопередачу в миллиметровом диапазоне показали в Индии. Это произошло в ноябре 1894 года – годом раньше, чем этого добился Александр Попов. Авторство индийского изобретения принадлежит ученому по имени Джагадиш Чандра Боше.

Теоретическое открытие электромагнитных волн ученый

Если смотреть на ситуацию с технических позиций, Попов и Маркони не придумали ничего нового. Они только создали устройство, используя в качестве основы открытия своих предшественников. При этом следует отметить, что идея радио пришла исследователям в голову приблизительно в одинаковое время.

Интересные факты о жизни ученого

Ученым, который первым сформулировал теорию электромагнитного поля, был Максвелл. Он прожил не слишком длинную жизнь, однако успел сделать много важного.

Ниже приведены наиболее примечательные и важные факты из биографии великого ученого:

Теория электромагнитного поля считается важным открытием, которая внесла существенный вклад в развитие физики. Его автором считается Максвелл. На основании исследований Фарадея английскому физику удалось сделать математическое описание теории. Дальнейшее совершенствование его разработок сделал Герц. Этот великий немецкий ученый подтвердил теорию Максвелла экспериментальным путем.

Открытие предсказанных Максвеллом электромагнитных волн было делом немецкого физика Генриха Герца.

Герц родился в 1857 г. в Гамбурге в семье юриста. После окончания школы юноша решил посвятить себя инженерной деятельности и поступил в Мюнхенский политехникум. Однако все возрастающее влечение к физике привело его на физико-математический факультет Берлинского университета. Здесь он вскоре был замечен Гельмгольцем и стал работать под его руководством. В лаборатории Гельмгольца он прошел блестящую экспериментальную и теоретическую школу. Тематика его работ вначале многообразна: механика, термодинамика, электричество, магнетизм и т. д. Решающим для выбора основного направления был 1879 год, когда Берлинская академия наук по инициативе Гельмгольца объявила конкурсную проблему: “Доказать экспериментально наличие какой-либо связи между электродинамическими силами и диэлектрической поляризацией изоляторов”. Гельмгольц обратил внимание Герца на глубину и принципиальную важность проблемы, и она становится в центре внимания молодого ученого.

В течение семи лет (с 1879 по 1886 г.) Герц искал пути решения поставленной Гельмгольцом задачи. “Счастливый случай, – пишет Герц, – представился мне осенью 1886 г.”. Именно тогда он открыл возможность получения регулярных колебаний высокой частоты и заметной интенсивности в коротких металлических проводниках. Открытие было вскоре сообщено в работе “О весьма быстрых электрических колебаниях”.

До Герца считали, что для осуществления интенсивных электрических колебаний необходимы контуры с большими индуктивностями и емкостями. Напомним, что электрические колебания были обнаружены при разряде лейденских банок и исследовались далее с помощью катушек Румкорфа.

Эти колебания, естественно, имели большой период и совершались в замкнутых контурах. Теория показывала, что для увеличения интенсивности электромагнитного излучения контура нужно уменьшить период колебаний.

Из формулы Томсона

Теоретическое открытие электромагнитных волн ученый

следовало, что для этого нужно уменьшить L и С. Но опыты обнаружили сразу же новую трудность: уменьшение интенсивности колебаний, связанное, как мы теперь знаем, с увеличением потерь энергии в контуре. “Счастливый случай”, о котором пишет Герц, позволил устранить эту трудность – найти возможность увеличения частоты колебаний, сохраняя их интенсивность: “в коротких металлических проводниках могут быть возбуждены колебания, свойственные этим проводникам”.

Был совершен переход к открытому колебательному контуру. Оказалось, что для возбуждения электрических колебаний вовсе не обязательно наличие емкостей и индуктивностей, что излучение более интенсивно, напротив, при их рассредоточении. Это было самое важное, ибо интенсивное излучение можно было обнаружить грубыми приборами.

Теоретическое открытие электромагнитных волн ученый

Рис. 11. Вибратор Герца

Для исследования поля излучения необходим был теперь детектор. Герц открыл возможность детектирования колебаний. Он улавливал электромагнитные колебания с помощью контура и измерял их интенсивность по длине искр в микрометре. Вибратор и детектор (резонатор) Герца изображены на рисунках 11 и 12.

Теоретическое открытие электромагнитных волн ученый

Рис. 12. Резонатор Герца

Герц установил три важнейших факта:

1) колебания можно возбудить в линейном проводнике;

2) электрическая искра является генератором электромагнитных колебаний;

3) колебания можно уловить на значительном расстоянии от генератора с помощью контура, в котором индикатором колебаний также служит электрическая искра.

По поводу последнего пункта Герц писал в своих воспоминаниях:

“Особенно приводили меня в изумление все большие расстояния, вплоть до которых я мог обнаружить действие. До тех пор привыкли считать, что электрические силы убывают по закону Ньютона и, следовательно, с увеличением расстояния быстро становятся незаметно малыми”.

Герц открыл по существу новую область экспериментирования, в которой были тесно переплетены важнейшие физические проблемы. Непрерывно возникали все новые вопросы и теоретического, и экспериментального характера. В ходе опытов обнаруживались новые явления, например факт действия ультрафиолетового света на заряд шарика микрометра, который явился отправным пунктом работ по фотоэффекту. Нужна была величайшая целеустремленность, чтобы не сбиться с прямого пути.

В начале 1888 г. Герц доказывает, что “индукционное действие распространяется в воздухе с конечной скоростью”. Однако эксперимент он не считает убедительным (особенно для тех, кто относится к теории Максвелла с предубеждением) и публикует вслед за этим свою знаменитую статью “Об электродинамических волнах в воздухе и об их отражении”. Именно в этом исследовании в “почти непосредственно осязаемой форме” были получены электромагнитные волны, или, как говорил Герц, “волнообразное распространение индукции в воздухе”.

Герц обнаружил, что “в некоторых положениях вторичного контура, например при приближении к стене, искры снова делаются вполне отчетливыми, но в непосредственной близости к стене они снова исчезают” (подчеркнуто мною.- В. Д.).

Герц дает следующее “простейшее” объяснение наблюдаемому факту: “волнообразно распространяющееся индукционное действие отражается от стен, причем отраженные волны в некоторых местах усиливают падающие, в других – ослабляют, в результате чего, благодаря интерференции обеих волн, в воздухе образуются стоячие волны”.

Опыты, производимые Герцем, давали “осязаемые” результаты: круговым контуром с разрядником в качестве детектора можно было буквально “прощупать” волну.

Итак, факт существования электромагнитных волн был установлен. Однако основные результаты опытов вуалировались целым рядом побочных явлений. Первые попытки уменьшить длину электромагнитной волны, излучаемой вибратором, не дали желаемых результатов, не удалась также сначала концентрация “электрических лучей” с помощью вогнутых металлических зеркал.

Герц проводит теоретический анализ, который указал пути дальнейших экспериментальных исследований электромагнитных волн. Теория показывала, что “прощупать” электромагнитную волну, выяснить ее свойства можно только повысив мощность излучения. Последнее могло быть достигнуто, с одной стороны, уменьшением длины волны, с другой – фокусировкой “лучей электрической силы”. Опыты были успешными: Герц получил свободную электромагнитную волну, интенсивность которой была достаточной для проведения решающих экспериментов. Результаты их были опубликованы в 1889 г. в работе “О лучах электрической силы”.

“Мне удалось,- пишет Герц во введении к этой работе, – получить отчетливые лучи электрической силы и произвести при их помощи все элементарные опыты, которые производятся со световыми и тепловыми лучами”.

Вначале Герц описывает устройство приборов, с помощью которых были осуществлены исторические опыты. Излучатель представлял собой цилиндрическое медное тело диаметром 3 см и длиной 26 см. Посредине оно было разрезано и снабжено искровым промежутком, полюсы которого образованы двумя сферическими поверхностями радиусом 2 см. Длина проводника приблизительно равнялась половине длины волны, соответствующей колебанию, возникающему в прямом проводе. Уже отсюда можно было сделать примерное заключение о периоде колебаний. Разряд подводился к обеим половинам проводника при помощи двух проводов, покрытых изоляцией; эти провода припаивались по обе стороны искрового промежутка. Индуктор позволял получить между остриями искру длиной 4,5 см.

Для обнаружения электрической силы в пространстве использовались маленькие искры, появлявшиеся при определенных условиях во вторичном проводнике. Применялся круговой проводник, имевший собственную частоту колебаний, примерно равную частоте первичного проводника. Радиус круга составлял 7,5 см; круг был сделан из медной проволоки толщиной 1 мм. Один конец проволоки оканчивался латунным шариком диаметром в несколько миллиметров, другой конец был заострен и мог быть установлен на очень маленьком расстоянии от латунного шарика при помощи микрометрического винта, изолированного от проволоки.

“При некотором навыке, – пишет Герц, – удавалось оценивать интенсивность процесса не столько по длине искр, сколько по их яркости”. Измерения показали, что длина волны, излучаемой описанным генератором, составляет около 60 см.

Далее Герц переходит к изложению решения следующей части задачи – концентрации энергии электромагнитных волн. Было изготовлено вогнутое зеркало из цинкового листа размером 2x2x5·10-4 м, укрепленного на деревянной раме, длина зеркала составляла 2 м, ширина отверстия 1,2 м, глубина 0,7 м, фокусное расстояние получилось равным 12,5 см. Вибратор устанавливался в середине фокальной плоскости. Такое устройство дало возможность получить волну, которая “прощупывалась” в направлении оптической оси на расстояниях 5-6 м. “Так как явления наблюдаются лишь вблизи оптической оси зеркала, – писал Герц, – то можем сказать, что из зеркала выходит электрический луч”.

Чтобы увеличить расстояние, на котором обнаруживалась электромагнитная волна, Герц изготовил второе вогнутое зеркало, “вполне подобное первому, и расположил в нем прямолинейный вторичный проводник таким образом, чтобы обе проволоки, имевшие 50 см длины, совпали с фокальной линией, а обе проволоки, ведущие к искровому промежутку, кратчайшим путем выходили через стенку зеркала, от которой они были изолированы. Таким образом., искровой промежуток находился как раз сзади зеркала, и наблюдатель мог устанавливать его и рассматривать, не искажая распространения волн”. Таким способом Герцу удалось довести расстояние, на котором “прощупывалась” волна, до 16 м.

С описанными приборами Герц и провел классические опыты, показавшие с необычайной убедительностью, что электромагнитные волны обладают такими же свойствами, как и световые лучи.

Первый опыт на прямолинейное распространение был поставлен так: “Если на прямой, соединяющей зеркала, расположить перпендикулярно направлению луча экран из цинкового листа 2 м высоты и 1 м ширины, то вторичные искры совершенно исчезают. Столь же полную тень дает ширма из станиоля или золотых листочков”.

Герц отмечает здесь же факт фундаментального значения: “изоляторы не задерживают луча, он проникает через деревянную стену или деревянную дверь, так что не без удивления можно наблюдать возникновение искр внутри закрытой комнаты”.

Я сделал восьмиугольную раму 2 м высоты и 2 м ширины и натянул на ней медные проволоки 1 мм толщины; все проволоки были параллельны друг другу и располагались через каждые 3 см. Если установить фокальные линии обоих зеркал параллельно и расположить между ними решетку перпендикулярно лучу так, чтобы направление проволок было перпендикулярно направлению фокальных линий, то наличие решетки не оказывает влияния на вторичные искры. Если же решетка установлена так, что ее проволоки параллельны фокальным линиям, то она полностью задерживает луч. Таким образом, в отношении проходящей энергии решетка ведет себя подобно турмалиновой пластинке, действующей на прямолинейно поляризованный оптический луч”.

Следующий опыт показывал отражение электромагнитных волн: “В большом помещении были поставлены оба вогнутых зеркала рядом таким образом, что их отверстия были обращены в одну и ту же сторону, а их оси пересекались в точке, удаленной от зеркал приблизительно на 3 м. При этом искровой промежуток в приемном зеркале оставался темным. Далее была установлена плоская вертикальная стенка из цинкового листа в 2 м высоты и 2 м ширины в точке пересечения осей зеркал, причем она стояла перпендикулярно биссектрисе угла, образованного осями. При этом в приемном зеркале наблюдается интенсивное искрообразование, вызываемое лучом, отраженным от стенки”.

Герц устанавливает далее, что углы падения и отражения равны друг другу.

После этого последовали опыты по преломлению волн. Герц изготовил призму из асфальта. Сечение ее представляло равнобедренный треугольник с длиной сторон 1,2 м; преломляющий угол был близок к 30°. Высота всей призмы, преломляющее ребро которой было вертикально, составляла 1,5 м. Пропустив через призму “электрический луч”, Герц убедился в том, что и в этом случае выполняются законы оптики.

Опыты были поразительны по простоте и убедительности; кратчайшим путем они привели к фундаментальному заключению: “представляется весьма вероятным, что описанные опыты доказывают идентичность света, тепловых лучей и электродинамического волнового движения”.

Здесь выражен непосредственный результат опытов с лучами “электрической силы”. Но этим сказано далеко не все. Описанные эксперименты имели более глубокое философское значение.

В известной обзорной статье “Исследования по распространению электрической силы” Герц дает следующую оценку своих работ: “Совокупностью описанных опытов впервые было дано доказательство распространения с конечной скоростью силы, которая считалась действующей на расстоянии мгновенно. Этот факт составляет философское и вместе с тем в известном смысле важнейшее достижение опытов. В этом доказательстве содержалось познание того, что электрические силы могут отделяться от весовых тел и существовать далее самостоятельно как состояния или изменения пространства”.

Герц представил электромагнитное поле как реальность, доступную экспериментальному исследованию. Его опыты указали путь к практическому использованию теории электромагнитного поля.

Методическое замечание. В учебнике кратко рассказывается об открытии электромагнитных волн. Предлагаемый обзор детализирует и углубляет этот материал. Необходимо иметь в виду, что после установления факта существования электромагнитных волн Герц занялся подтверждением электромагнитной теории света. В обзоре рассказано об этих опытах, так что он несколько опережает материал существующей программы. Учитель должен знать всю цепь экспериментов. Учащимся о “лучах электрической силы” следует рассказать в разделе оптики.

Опыты Герца просты в постановке и в высшей степени поучительны. Их повторение может послужить предметом увлекательной работы школьного физического кружка. Экскурс в историю формирования понятия электромагнитного поля содержит необходимый теоретический материал для разъяснения экспериментов, приведших к радиотехнике.

Открытие электромагнитных волн

Вернемся, однако, к Герцу. Как мы видели, в своей первой работе Герц получил быстрые электрические колебания и исследовал действие вибратора на приемный контур, особенно сильное в случае резонанса. В работе «О действии тока» Герц перешел к изучению явлений на более далеком расстоянии, работая в аудитории длиной 14 м и шириной 12 м. Он обнаружил, что если расстояние приемника от вибратора менее 1 м, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 м, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 м, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 м. Этот результат противоречит всем законам теории дальнодействия Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей статье 1889 г., — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».

Герц предпринимает теоретический анализ излучения своего вибратора («осциллятора Герца») на основе теории Максвелла. Статья «Силы электрических колебаний, рассматриваемые по максвелловской теории» содержит результаты такого анализа. В ней Герц выписывает уравнения Максвелла в форме, отличной от максвелловской, в виде двух «триплетов»:

Теоретическое открытие электромагнитных волн ученый

Эти уравнения отличаются от современных обозначениями. Мы теперь пишем δ/δ вместо герце-максвелловского d/d 1/c вместо А; Еx, Еу, Еz вместо X, У, Z, Нх, у Hz вместо L, М, N и применяем вместо расписывания по компонентам компактную векторную запись.

Теоретическое открытие электромагнитных волн ученый

К уравнениям (1) и (2) Герц прибавляет уравнения, выражающие отсутствие зарядов и токов (за исключением начала координат, где Герц помещает диполь с переменным во времени электрическим моментом El sin nt):

Теоретическое открытие электромагнитных волн ученый

или в современной векторной форме:

Теоретическое открытие электромагнитных волн ученый

Далее Герц выписывает выражения для электрической и магнитной энергии:

Теоретическое открытие электромагнитных волн ученый

и выводит из уравнений Максвелла теорему Пойнтинга о потоке энергии, которую он называет «в высшей степени замечательной» Современные учебники электродинамики пишут фундаментальные уравнения электромагнитной теории в форме Герца, за исключением обозначений, как было сказано выше. Теперь чаще применяют не гауссову систему единиц, как это делал Герц, а систему СИ. Герц решает уравнения, введя вспомогательную функцию, получившую название «вектор Герца», которую сам Герц выписывал в виде:

Теоретическое открытие электромагнитных волн ученый

где Е— заряд диполя, l — его длина,

m=π/λ, n= π/T

Теоретическое открытие электромагнитных волн ученый

Рис. 45. Поле вибратора Герца

Полученное Герцем решение дает вблизи вибратора картину электростатического поля диполя и магнитного поля элемента тока в соответствии с законом Био — Савара. Но на дальних расстояниях получается волновое поле, напряженность которого убывает обратно пропорционально расстоянию, электрическая сила и магнитная сила перпендикулярны радиус-вектору и пропорциональны синусу угла, образованного направлением радиуса-вектора с осью диполя. Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества.

Это поле распространяется в пространстве со скоростью света с = 1/A, причем в направлении оси диполь не излучает. Максимальное излучение происходит в экваториальном направлении перпендикулярно оси диполя. Эти расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.

Теоретическое открытие электромагнитных волн ученый

Рис. 46. Линии вибратора Герца

Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света. В работе «О лучах электрической силы», помещенной в «Протоколах Берлинской Академии наук» 13 декабря 1888 г., Герц описывает свои опыты по распространению, поляризации, отражению, преломлению электромагнитных волн. Герц построил зеркала для опытов с этими волнами (зеркала Герца), призму из твердой смолы (асфальт) с основанием 1,2 м и высотой 1,5 м с преломляющим углом 30°. Все эти опыты доказали полную аналогию электромагнитных и световых волн. Готовя в 1891 г. издание собрания своих статей под общим названием «Исследования о распространении электрической силы», Герц написал вводную статью, в которой подробно изложил историю и содержание своих исследований. Обзор экспериментальных работ он заканчивал словами: «Целью этих работ была проверка основных гипотез теории Фарадея —Максвелла, а результат опытов есть подтверждение основных гипотез этой теории».

Теоретическое открытие электромагнитных волн ученый

Рис. 47. Зеркала Герца

Опыты Герца вызвали огромный резонанс. Особенное внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, — писал Герц в «Введении» к своей книге «Исследования по распространению электрической силы», — быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания ».

Теоретическое открытие электромагнитных волн ученый

Таким образом, П. Н. Лебедев уже в эпоху зарождения радиофизики и радиотехники поставил задачу миниатюризации приборов для излучения и исследования электромагнитных волн и тем самым как бы предначертал современное направление конструкторской мысли в этой области Приборы Лебедева были настолько малы, что, по выражению итальянского физика Аугусто Риги (1850—1920), который в 1894 г. разработал метод получения коротких волн, их можно было носить в жилетном кармане. Генератор Лебедева состоял из двух платиновых ци-линдров, каждый по 1,3 мм длиной и 0,5 мм в диаметре, между которыми проскакивала искра. Зеркала Лебедева имели высоту 20 мм, отверстие 12 мм, фокусное расстояние 6 мм. Для исследования преломления Лебедев использовал эбонитовую призму высотой 1,8 см, шириной 1,2 см, весом менее 2 г, тогда как призма Герца весила 600 кг. Столь же малыми были двупреломляющие призмы из ромбической серы. Для наблюдения волн Лебедев пользовался термоэлементом.

Лебедев своей работой выдвинул также задачу идти по пути уменьшения длин электромагнитных волн до смыкания их с длинными инфракрасными волнами. Встретившись на одном из съездов с немецким физиком Рубенсом (1865—1922), который занимался исследованием инфракрасных волн, Лебедев высказал шутливое пожелание встретиться в эфире. Это пожелание осуществили в 20-х годах русские ученые-женщины А. А. Глаголева-Аркадьева и М.А.Левицкая

П. Н. Лебедев, с одной стороны, укрепил позиции теории Максвелла, с другой стороны, первым измерил предсказанное Максвеллом световое давление и показал, что оно совпадает с теоретическим значением, полученным Максвеллом.

Теоретическое открытие электромагнитных волн ученый

Приборы П.Н. Лебедева

Чтобы посвятить себя изучению физики, я учился с октября 1887 по август 1889 в Страсбурге, зимний семестр 1889/90 в Берлине, а с пасхи 1890 по июль 1891 снова в Страсбурге». Учителем Лебедева в Страсбурге был известный физик Август Кундт (1839—1894), к которому Лебедев относился с большим уважением и сердечной признательностью. Кундту Лебедев посвятил после его смерти теплый прочувствованный некролог, в котором характеризовал его «не только как первоклассного ученого», но и как «несравненного учителя, который заботился о будущем своей любимой науки, образуя и воспитывая ее будущих деятелей».

Защитив в Страсбурге диссертацию «Об измерении диэлектрических постоянных паров и о теории диэлектриков Моссоти — Клаузиуса», Лебедев вернулся в Россию и стал работать в Московском университете у Столетова в должности лаборанта. Последним выступлением в Страсбурге и первой его печатной публикацией в Москве была небольшая заметка «Об отталкиватель-ной силе лучеиспускающих тел». Она начиналась словами: «Maxwell показал, что световой или тепловой луч, падая на поглощающее тело, производит на него механическое давление в направлении падения; величину этой давящей, силыр можно выразить в форме:

p = E/V

где Е — энергия, которая падает в единицу времени на поглощающее тело, а V— скорость луча в той среде, в которой находится тело».

Итак, первая русская статья П. Н.Лебедева начиналась указанием на существование светового давления. Световому давлению была посвящена и последняя, оставшаяся незаконченной, статья Лебедева. Исследование светового давления стало делом жизни Петра Николаевича.

Исследованию этого «более сложного случая» Лебедев посвятил свою докторскую диссертацию «Экспериментальное исследование пондеромоторного Действия волн на резонаторы». Эта Диссертация заняла у Лебедева немало времени и сил. Он начал работу над темой в 1894 г., в котором вышла первая часть его работы посвященная действию электромагнитных волн. В 1896 г. была опубликована статья, посвященная действию гидродинамических волн, в 1899 г. — статья, описывающая действие акустических волн. В 1899 г. Лебедев опубликовал отдельной брошюрой все три статьи, которым предпослал особое «Введение». В 1900 г. за эту работу, представленную как магистерская диссертация, Лебедев получил ученую степень доктора, минуя магистерскую степень. Это была высокая оценка факультетом его труда.

Теоретическое открытие электромагнитных волн ученый

Рис. 49. Схема опыта П.Н. Лебедева по получению ультракоротких волн

Лебедев с целью исследования этих сил изучает действие волн на колеблющуюся систему.Такая система—резонатор — моделирует молекулу. Изучая действие электромагнитных волн на резонатор, Лебедев исследует отдельно действие магнитного и действие электрического вектора волны.

Магнитный осциллятор, возбуждаемый магнитным вектором падающей волны, представлял собой миниатюрную катушку из четырех витков серебряной проволоки, соединенную с конденсатором из двух пластинок, вырезанных в форме «бисквитов» квадрантного электрометра. Вся система была подвешена на чувствительном подвесе.

Электрический резонатор состоял из двух цилиндрических квадрантов, собранных из отдельных алюминиевых полосок, соединенных с катушкой самоиндукции из серебряной проволоки, подвешенной так, что магнитный вектор не мог вызвать ее замыкания и только электрические силы могли действовать на заряды конденсатора.

Лебедев показал, что законы пондеромоторного действия волн на магнитные и электрические резонаторы тождественны. Если частота колебаний резонатора выше частоты падающей волны (частота вибратора), то он притягивается к вибратору, ниже настроенный резонатор отталкивается. Притяжение сменяется отталкиванием при переходе через резонанс.

Лебедев изучил далее действие гидродинамических волн, возбуждаемых соответствующим вибратором, на гидродинамический резонатор, представляющий собой шарик на стальной пружине.

Здесь он также обнаружил притяжение при частотах резонатора более высоких, чем частота вибратора, и отталкивание в противоположном случае и смену притяжения отталкиванием при переходе через резонанс. В последней части своего исследования Лебедев обратился к акустическим волнам. Здесь также наблюдались притяжения и отталкивания в зависимости от отношения частот вибратора и резонатора, но только в непосредственной близости от вибратора. По мере увеличения расстояния до резонатора притягиватель-ные силы уменьшаются и на достаточно большом расстоянии полностью исчезают, остаются лишь отталкивающие силы, достигающие наибольшей величины при резонансе.

Лебедев считал, что обнаруженная им тождественность пондеромоторных сил в столь различных явлениях показывает, что элементарные законы этих явлений должны быть независимы от природы волн и воспринимающих их резонаторов. Отсюда вытекает возможность распространения этих законов на область молекулярного излучения и взаимодействия молекул. Однако, указывает Лебедев, «нет никаких данных, позволяющих сказать что-либо определенное о свойствах молекул-резонаторов».

Опыты были проведены с тремя различными приборами и с двумя различными калориметрами; они были разбиты на десять независимых групп, и их результаты сводятся к следующему:

1. Падающий пучок световых лучей оказывает давление как на поглощаю-Щее, так и на отражающее тело; это пондеромоторное действие не зависит ни от известных вторичных круксовых сил, вызываемых нагреванием, ни от явлений конвекции.

2. Эти силы светового давления прямо пропорциональны падающему количеству энергии и не зависят от цвета световых лучей.

3. Эти силы светового давления в пределах ошибок наблюдения количественно дают полное совпадение с пондеромоторными силами излучения, вычисленными Максвеллом и Бартоли.

Таким образом, существование сил давления световых лучей, предсказанных Максвеллом и Бартоли, доказано экспериментально».

Итальянский физик Адольфо Бартоли (1851—1896), о котором упоминает здесь Лебедев, обосновал из термодинамических соображений в 1876 г. существование светового давления. В своей последней статье «Давление света» Лебедев предполагал посвятить доказательству Бартоли целый параграф. Этот параграф был написал П. П. Лазаревым.

Результат Лебедева произвел огромное впечатление. В. Томсон (лорд Кельвин) признавался К. А. Тимирязеву, что он всю жизнь воевал с Максвеллом из-за его светового давления, но Лебедев теперь заставил его признать свою неправоту.

В 1901 г. Лебедев становится профессором Московского университета, в котором он десять лет назад начинал работу у Столетова в скромной должности лаборанта. Теперь он всемирно известный ученый, глава школы физиков, в которой под его руководством работают десятки учеников. Из школы Лебедева вышли такие известные советские ученые, как академик П. П. Лазарев, в свою очередь создавший школу, чл.-кор. Академии наук СССР В. К. Аркадьев, также глава школы магнетологов и радиофизиков. Учениками Лебедева были А. Б. Млодзеевский, Т. П. Кравец, К. П. Яковлев, В. Д. Зернов, Н. Е. Успенский, Р. А. Колли, В. И. Романов, А. К. Тимирязев, Н. А. Капцов и многие другие.

Вначале исследования П. Н. Лебедева и его учеников выполнялись в неудобных для научных изысканий лабораториях общего практикума, устроенных еще Столетовым. Приборов не хватало. Средства, отпускаемые на нужды лаборатории, были очень малы. Работали после 3 часов, когда кончались занятия в практикуме. Поэтому Лебедеву постоянно приходилось вести борьбу за улучшение условий для исследовательской работы, что отнимало у него много сил и времени.

Обстановка для исследований улучшилась после создания в 1903 г. физического института. Здесь было отведено две большие комнаты во втором этаже под лабораторию Лебедева и полуподвальное помещение для исследований молодых учеников Лебедева. Приборов было еще очень мало, не хватало столов, вместо них иногда использовались ящики из-под оборудования, но это была уже настоящая исследовательская лаборатория, где можно было работать в любое время. Как вспоминал Н. А. Капцов, Лебедев появлялся в лаборатории в 11 часов и начинал обход своего «подвала», подолгу беседуя с каждым работающим, требуя сознательного отчета обо всем проделанном. Затем Лебедев отправлялся в мастерские. Его интересовало усвоение учениками навыков ручной работы. Лебедев был очень требователен к своим ученикам, он «требовал, чтобы каждый из работающих в лаборатории строго продумывал весь план своей работы. Но этот план исследовательской работы должен был быть не застывшим и раз и навсегда установленным, а действенным и живым».

Молодым ученикам Лебедева очень помогали организованные им еще в Столетов ской лаборатории коллоквиумы.

Они проводились раз в неделю. Ученики Лебедева делали доклады, затем следовало обсуждение, сам П. Н. Лебедев выступал на этих коллоквиумах с сообщениями о последних достижениях физики. На этих коллоквиумах все — начиная со студента и кончая руководителем — чувствовали себя членами большой семьи, и таким путем создавалось то единение работающих, которыми всегда отличалась лебедевская лаборатория . И з коллоквиумов в спо следствии выросло Московское физическое общество, основателем и первым председателем которого был П. Н. Лебедев. Питомцы лебедевской школы и их ученики составили большой отряд советской физики.

В 1902 г. Лебедев выступил на съезде Немецкого астрономического общества с докладом, в котором вновь вернулся к вопросу о космической роли светового давления. В историческом обзоре этого доклада Лебедев напоминает о гипотезе Кеплера, который предположил, что отталкивание кометных хвостов Солнцем обусловлено давлением его лучей на частицы хвоста. Действие света на молекулу, указывает Лебедев, зависит от ее избирательного поглощения. Для лучей, поглощаемых газом, давление обусловлено законом Максвелла, лучи, не поглощаемые газом, действие на него не оказывают. Лебедев ставит задачу определить давление света на газы. Эта многолетняя работа, потребовавшая от экспериментатора много сил и остроумия, подводила итог всей его научной деятельности начиная с 1891 г.

Для измерения малых сил давления Лебедев ставил эксперимент таким образом, чтобы «газ свободно мог перемещаться в направлении пронизывающих его лучей и производил давление на очень чувствительный поршневой аппарат, на который лучи света непосредственно действовать не могли». Чтобы избежать влияния конвекционных токов, Лебедев смешивал газ с водородом, обладающим значительной теплопроводностью, что позволяло быстро выравнивать плотность в разных точках газа. Эта трудная экспериментальная работа осталась непревзойденным образцом экспериментального искусства.

За работы по давлению света Лебедев был избран в 1911 г. почетным членом Королевского института в Лондоне.

Лебедев глубоко интересовался проблемами астрофизики, активно работал в Международном союзе по исследованию Солнца, написал ряд статей о кажущейся дисперсии межзвездной среды. Открытие Хейлом магнетизма солнечных пятен направило его внимание на исследование магнетизма вращения.

В последние годы жизни его внимание привлекла проблема ультразвука. Этими вопросами занимались его ученики В. Я. Альтберг и Н. П. Неклепаев. Сам Лебедев написал заметку «Предельная величина коротких акустических волн».

Его ученики П. П. Лазарев и А. К. Тимирязев исследовали явление внутреннего трения в разреженных газах. Но вся эта напряженная работа оборвалась в 1911 г., когда Лебедев вместе с другими профессорами покинул университет в знак протеста против действий реакционного министра просвещения Кассо. Русская и международная общественность поспешила на помощь Лебедеву, но силы его были подорваны, и 14 марта 1912 г. П. Н. Лебедев скончался.

В историю физики Лебедев вошел как первоклассный экспериментатор, решивший ряд труднейших проблем современной ему физики. Значение Лебедева для России не исчерпывается этим. Он был создателем московской Школы физиков. Вышедшие из этой Школы ученые сыграли важную роль в становлении советской физики.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят, по меньшей мере, к временам Гюйгенса1, когда они получили уже и заметное количественное развитие.

Исаак Ньютон Роберт Гук

И. Риттер в 1804 г.

Дж. К. Максвелл

Г. Герц В. Рёнтген

В конце 19 столетия белорусский учёный, профессор Я. Наркевич-Иодко9 впервые в мире исследовал возможности использования электромагнитного излучения газоразрядной плазмы для электрографии (визуализации) живых организмов, то есть для нужд практической медицины.

В 1900 году Планк при теоретическом исследовании проблемы излучения абсолютно чёрного тела открывает квантованность процесса электромагнитного излучения. Эта работа стала началом квантовой физики.

Начиная с 1905 года Эйнштейн, а затем и Планк публикуют ряд работ, приведших к формированию понятия фотона, что стало началом создания квантовой теории электромагнитного излучения.

Альберт Эйнштейн Макс Планк

Дальнейшие работы по квантовой теории излучения и его взаимодействия с веществом, приведшие в итоге к формированию квантовой электродинамики в её современном виде, принадлежит ряду ведущих физиков середины 20 века, среди которых можно выделить, применительно именно к вопросу квантования электромагнитного излучения и его взаимодействия с веществом, кроме Планка и Эйнштейна, Бозе, Бора, Гейзенберга, Де-Бройля, Дирака, Фейнмана, Швингера, Томонагу.

1. Карпенков С.Х. Концепции современного естествознания. Учебник для студентов вузов. – 11-е изд., перераб. и доп.– М.: КНОРУС, 2012. – 670 с.

2. Френкель Е.Н. Концепции современного естествознания: физические, химические и биологические концепции : учеб. пособие. – Ростов н/Д: Феникс, 2014. – 246 с.

3. Интернет-ресурсы (ru.wikipedia.org):

1 Христиа́н Гю́йгенс ван Зёйлихем (нидерл. Christiaan Huygens; 14.04.1629, Гаага – 8.07.1695, Гаага) – нидерландский механик, физик, математик, астроном и изобретатель. Один из основоположников теоретической механики и теории вероятностей. Внёс значительный вклад в оптику, молекулярную физику, астрономию, геометрию, часовое дело. Открыл кольца Сатурна и Титан (спутник Сатурна). Первый иностранный член Лондонского королевского общества (1663), член Французской академии наук с момента её основания (1666) и её первый президент (1666–1681).

2 Огюсте́н Жан Френе́ль (фр. Augustin-Jean Fresnel; 10.05.1788–14.07.1827) – французский физик, один из создателей волновой теории света. Основные работы Френеля посвящены физической оптике. Физику изучал самостоятельно после ознакомления с работами Э. Малюса. Также самостоятельно начал проводить эксперименты по оптике. В 1815 переоткрыл принцип интерференции, проделав по сравнению с Томасом Юнгом несколько новых опытов (в частности опыт с «бизеркалами Френеля»). В 1816 году дополнил принцип Гюйгенса, введя представление о когерентной интерференции элементарных волн, излучаемых вторичными источниками (принцип Гюйгенса – Френеля). Исходя из этого принципа, в 1818 разработал теорию дифракции света, на основе которой предложил метод расчёта дифракционной картины, основанный на разбиении фронта волны на зоны (так называемые зоны Френеля). С помощью этого метода рассмотрел задачу о дифракции света на краю полуэкрана и круглого отверстия. В 1821 независимо от Т. Юнга доказал поперечность световых волн. В 1823 установил законы изменения поляризации света при его отражении и преломлении (формулы Френеля). Изобрёл несколько новых интерференционных приборов (зеркала Френеля, бипризма Френеля, линза Френеля). В 1823 Френель был избран членом Парижской АН. В 1825 стал членом Лондонского королевского общества. Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни. Скончался в возрасте 39 лет от туберкулёза.

3 Фредерик Уильям (Фридрих Вильгельм) Гершель (англ. Frederick William Herschel, нем. Friedrich Wilhelm Herschel; 15.11.1738, Ганновер – 25.08.1822, Слау близ Лондона) – английский астроном немецкого происхождения. Прославился открытием планеты Уран, а также двух её спутников – Титании и Оберона. Он также является первооткрывателем двух спутников Сатурна и инфракрасного излучения. Менее известен двадцатью четырьмя симфониями, автором которых он является.

4 Иога́нн Вильге́льм Ри́ттер (нем. Johann Wilhelm Ritter; 16.12.1776, Гаунау, Силезия (сейчас Хойнув, Польша) – 23.01.1810, Мюнхен) – немецкий химик, физик, философ-романтик. Сделал ряд важнейших открытий в области электрохимии и ультрафиолетового излучения. Ему принадлежит открытие ультрафиолетовой части электромагнитного спектра.

5 Майкл Фараде́й (англ. Michael Faraday, 22.09.1791, Лондон – 25.08.1867, Лондон) – английский физик-экспериментатор и химик. Член Лондонского королевского общества (1824) и множества других научных организаций, в том числе иностранный почётный член Петербургской академии наук (1830). Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя. Среди других его открытий – первый трансформатор, химическое действие тока, законы электролиза, действие магнитного поля на свет, диамагнетизм. Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод, анод, электролит, диэлектрик, диамагнетизм, парамагнетизм и др. Фарадей – основоположник учения об электромагнитном поле, которое затем математически оформил и развил Максвелл. Основной идейный вклад Фарадея в физику электромагнитных явлений заключался в отказе от ньютонова принципа дальнодействия и во введении понятия физического поля – непрерывной области пространства, сплошь заполненной силовыми линиями и взаимодействующей с веществом.

6Джеймс Клерк Ма́ксвелл (англ. James Clerk Maxwell; 13.06.1831, Эдинбург, Шотландия – 5.11.1879, Кембридж, Англия) – британский физик, математик и механик. Шотландец по происхождению. Член Лондонского королевского общества (1861). Максвелл заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов (установил распределение молекул газа по скоростям). Одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики («демон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость – газ и другие). Пионер количественной теории цветов; автор трёхцветного принципа цветной фотографии. Среди других работ Максвелла – исследования по механике (фотоупругость, теорема Максвелла в теории упругости, работы в области теории устойчивости движения, анализ устойчивости колец Сатурна), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов.

7 Ге́нрих Ру́дольф Герц (нем. Heinrich Rudolf Hertz; 22.02.1857, Гамбург – 1.01.1894, Бонн) — немецкий физик. Основное достижение – экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Он подробно исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн, доказал, что скорость их распространения совпадает со скоростью распространения света, и что свет представляет собой не что иное, как разновидность электромагнитных волн. Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу создания радио. В 1886–87 годах Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонансного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. В ряде работ по механике дал теорию удара упругих шаров, рассчитал время соударения и т. д. В книге «Принципы механики» (1894) дал вывод общих теорем механики и её математического аппарата, исходя из единого принципа (принцип Герца).

8 Вильге́льм Ко́нрад Рентге́н (нем. произн. Рёнтген; нем. Wilhelm Conrad Röntgen; 27.03.1845–10.02.1923 – немецкий физик, работавший в Вюрцбургском университете. С 1875 он является профессором в Хоэнхайме, с 1876 – профессор физики в Страсбурге, с 1879 – в Гиссене, с 1885 – в Вюрцбурге, с 1899 – в Мюнхене. Первый в истории физики лауреат Нобелевской премии (1901 год).

10 Поль Ульри́ш Вилла́р (правильнее Вийяр, фр. Paul Ulrich Villard, 1860–1934) – французский физик и химик. В 1900 при изучении радиоактивности открыл гамма-лучи. Член Парижской академии (1908). С 1896 занялся изучением радиоактивности. Поставив свинцовый экран на пути радиации, он блокировал альфа-лучи (уже известные к тому времени), после чего в 1900 выяснил, что оставшаяся радиация состоит из двух частей: одна отклоняется магнитным полем (эта компонента также была уже известна как бета-лучи), другая – не отклоняется. Тем самым он открыл гамма-лучи (название в 1903 г. предложил Резерфорд). В дальнейшем Виллар много занимался созданием средств дозиметрии и первым (1908) предложил для количественной оценки излучения использовать ионизационную камеру.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *