Задачи ЕГЭ на нахождение средней скорости
На экзамене по математике вам может также встретиться задача о нахождении средней скорости. Запомним, что средняя скорость не равна среднему арифметическому скоростей. Она находится по специальной формуле:
где — средняя скорость, – общий путь, — общее время.
Если участков пути было два, то
Путешественник переплыл море на яхте со средней скоростью км/ч. Обратно он летел на спортивном самолете со скоростью км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.
Мы не знаем, каким было расстояние, которое преодолел путешественник. Знаем только, что это расстояние было одинаковым на пути туда и обратно. Для простоты примем это расстояние за (одно море). Тогда время, которое путешественник плыл на яхте, равно , а время, затраченное на полет, равно . Общее время равно .
Средняя скорость равна км/ч.
Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Средняя скорость – это вовсе не среднее арифметическое скоростей. По определению,
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задачи ЕГЭ на нахождение средней скорости» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
06.06.2023
В ЕГЭ по матматике профильного уровня встречаются задачи на нахождение средней скорости автомобиля, путешественника, бегуна и т.п. В этой статье мы постараемся разобраться со способами решения данного типа зданий. Попробуйте решить следующие задачи:
Если у Вас возникает недопонимание, или же вы просто не знаете как решать такие задачи, то данная статья предназначена как раз для Вас!
Средняя скорость объекта
Для начала вспомним формулу, по которой решаются все задачи на движение: ( S=vt ) — пройденный путь равняется произведению скорости и времени. Так вот, средняя скорость равна отношению всего пути ко времени, которое было затрачено на прохождение этого пути. Если перевести на математический язык:
Решение задач
А теперь, обогатившись некоторой теорией решим первую из предложенных задач:
Первую треть трассы велосипедист ехал со скоростью 12 км/ч, вторую треть – со скоростью 16 км/ч, а последнюю треть – со скоростью 24 км/ч. Найдите среднюю скорость велосипедиста на протяжении всего пути. Ответ дайте в км/ч.
Ответы к текстовым задачам
В данном видео-уроке я покажу, как решаются все три предложенные текстовые задачи на нахождение средней скорости. Также Вы можете сравнить своё решение с моим.
Обратно он летел на спортивном самолете со скоростью 496 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути.
(496+16)÷2= 256 (км/ч) -средняя скоростьпотому что среднее арифметическое (средняя скорость в данном случае) это частное суммы и кол-ва слагаемых
Площадь обрезков будет равна разности площади квадрата и круга.
S кв. = 4а40 * 40 = 1 600 см² – площадь квадрата
S кр. = π*r²Если диаметр круга = 40 см. то радиус = 40 : 2 = 20 см3,14 * 20² = 1 256 см² – радиус круга
1 600 – 1 256 = 344 см² – площадь обрезков.
15 * x – 77 = 1315x = 90x = 6
А) В первый день израсходовали 3/10 пачки, т.е 500*(3/10)=50*3=150л Во второй день израсходовали в 2 раза меньше, т.е 150л /2=75л Итого 150+75=225л
Пусть y обезьян в цирке, тигров у+2, собак у+9, зная, что всего животных 20, составим уравнениеу+у+2+у+9=203у+11=203у=20-113у=9у=9/3у=3Ответ: в цирке 3 обезьяны