В клетке липиды в отличие от углеводов выполняют функцию

Основные термины • вопросы части В • вопросы части С

Эндоплазматическая сеть — внутриклеточный органоид, именуемый иначе эндоплазмати́ческим рети́кулумом. В сокращении обозначают ЭПС либо ЭПР. Представлен в виде разветвлённой ультрамикроскопической величины сетки. Компонентами которой служит система: уплощённых полостей, особого рода пузырьков, канальцев, имеющих мембранное окружение.

Сетка имеет непростую структуру и достаточно сложные взаимосвязи. Кроме того, ретикулярные составные в значительной мере не стабильны, они подвержены частым переменам. ЭПР находится в цитоплазме, разделяет её практически равномерно. Делит на секции, структурируя содержимое. Присутствует исключительно в клетках эукариотического типа.

Основные понятия

Эукариот — это клеточное образование, в котором имеются такие структуры как: оформленное ядро и мембранного типа органоиды.

Клетка — элементарная структурная единица в системе организма, наделённая способностью к самовозобновлению, возможностью к саморегуляции и самовоспроизведению.

Цитолемма (плазмолемма) — окружающая клетку биологическая мембрана.

Ретикулум даёт возможность значимо увеличить суммарные значения площади внутриклеточных поверхностей. Внутренне содержимое органоида — матрикс — материал, являющийся продуктом местного синтеза. Имеет умеренную плотность. На мембранах ЭПР ведётся большое число первичных синтезов. Производятся востребованные для жизнедеятельности клетки продукты.

Первичными их именуют условно, поскольку молекулы синтезированных компонентов станут подвергаться в последующем химическим преобразованиям. Эти синтетические превращения веществ идут как одновременно, так и опосредованно. Поэтому объём и состав химических включений внутри секций неодинаков. Открываются полости ретикулума в перинуклеарное пространство. Расположена последняя между соприкасающимися участками кариолеммы — ядерной оболочки.

Площадь сетки эндоплазматического ретикулума занимает более ½ суммарной площади всех клеточных мембранных конструкций. По морфологии она равнозначна покрову клеточного ядра, с которым составляет единое целое. Мембранный аппарат ЭПС позволяют вести активный транспорт ряда компонентов по градиенту концентрации, то есть от меньшей концентрации к большей.

Продукцией ЭПР служат белки, липиды и ферменты: аденозинфосфатазы и синтезированные мембранные липиды.

— это нерастворимые в воде, жироподобные органические вещества. Как и углеводы, липиды образованы атомами трёх элементов: углерода, водорода и кислорода.

Липиды имеют разное строение. Выделяют следующие группы этих веществ:

В клетке липиды в отличие от углеводов выполняют функцию

Рис. (1). Модель молекулы жира

Липиды содержатся в каждой клетке, но их количество в разных клетках изменяется в широких пределах (от (2) до (90)).

Липиды способны образовывать сложные комплексные соединения с молекулами белков (липопротеины) и с молекулами углеводов (гликолипиды).

1. Энергетическая функция — одна из важнейших функций жиров. Окисление жиров сопровождается выделением большого количества энергии (энергетический эффект в два раза больше, чем для углеводов и белков).

2. Фосфолипиды выполняют структурную функцию — они образуют все плазматические мембраны в клетке.

3. Запасающую функцию в живых организмах выполняют жиры. Они откладываются про запас в семенах и плодах растений, в жировой клетчатке животных.

4. Жиры могут служить источником воды, так как при окислении (1) г жира образуется более (1) г воды. Поэтому некоторые животные могут долгое время выдерживать без воды (верблюды в пустыне — до двух недель, а медведи зимой — более двух месяцев).

5. Защитная функция проявляется в том, что запасы жира защищают внутренние органы от травм.

6. Подкожный жир сохраняет тепло и выполняет теплоизоляционную функцию.

7. Миелин, покрывающий отростки нервных клеток, изолирует их, ускоряя передачу нервных импульсов (электроизоляционная функция).

8. Некоторые гормоны (кортизон, альдостерон, тестостерон, прогестерон) имеют стероидную природу и выполняют регуляторную функцию.

9. Воски выполняют смазывающую функцию. Они покрывают листья и плоды многих растений, кожу, шерсть, перья животных и защищают их от намокания. Пчёлы используют воск как строительный материал для сот.

Рис. 1. Модель молекулы жира. Общественное достояние, https://upload.wikimedia.org/wikipedia/commons/thumb/6/64/Trimyristin-3D-vdW.png/1024px-Trimyristin-3D-vdW.png.  09.09.2021.

Эндоплазматическая сеть

Эндоплазматическая сеть — это органоид, находящийся внутри эукариотической клетки. Представляет собой сложную систему мембран, окружающих канальцы, пузырьки, уплощенные полости различной формы.

Площадь мембран ЭПС составляет более 50% площади всех мембран клетки. Морфологически они равны оболочке ядра клетки, составляют с ней единое целое. Их основная задача состоит в том, чтобы осуществлять перенос ряда веществ по градиенту концентрации. В данном случае — от меньшего показателя к большему.

В некоторых учебниках биологии можно встретить термин «эндоплазматический ретикулум» или «ЭПР». Это то же самое: reticulum переводится с латыни как «сеточка».

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Главной особенностью и характеристикой органоида является нестабильность его структуры: сетка подвержена постоянным деформациям, частым изменениям размеров.

Разновидности

Выделяют два вида эндоплазматической сети:

Их основное отличие заключается в составе, строении. На поверхности гранулярной ЭПС фиксируется наличие большого количества рибосом, в то время как на поверхности агранулярной они отсутствуют.

Эукариотическая клетка способна образовать еще один вид эндоплазматической сети — переходящий. Обычно его можно обнаружить на том участке, где шероховатая сеть переходит в гладкую.

Общие функции обоих видов

Гранулярная и агранулярная ЭПС выполняют следующие функции:

Последняя функция реализуется благодаря разнице потенциалов между поверхностями мембран сети. Она делает возможным проведение импульсов возбуждения.

Функции гранулярной сети

Главной функцией гранулярной ЭПС является синтез белков. Процесс происходит на поверхности рибосом, расположение которых делает возможным их присоединение к поверхности сети. Полученные в результате полипептидные цепочки размещаются в полости гранулярной ЭПС, где происходит их обрезание и сворачивание.

Таким способом линейные последовательности аминокислот получают трехмерную структуру, а затем повторно транспортируются в цитозоль.

Функции агранулярной сети

Агранулярная ЭПС задействована в большинстве процессов метаболизма. Ее ферменты участвуют в производстве стероидов, жирных кислот, липидов. Кроме того, агранулярная сеть участвует в:

Также агранулярная ЭПС играет важную роль в процессе синтеза провакуолей — одномембранных органоидов, жизненно необходимых для дальнейшего функционирования клетки.

Насколько полезной была для вас статья?

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой

Расскажите, что не так

Функции и строение

Эндоплазматическая сеть (или ЭПС, также ее называют эндоплазматический ретикулум) — это мембранный клеточный органоид, который представляет собой разветвленную, замкнутую систему канальцев, упрощённых полостей и пузырьков, окруженных биологической мембраной. ЭПС может быть гладкой или шероховатой. Оба этих вида присутствуют в каждой клетке живого организма: как человека или животного, так и растения.

Строение эндоплазматический сети

Ретикулум состоит из разветвленной системы трубочек и цистерн (карманов), которые окружены мембранной оболочкой. Разберем каждую составляющую подробнее.

Мембрана

Она морфологически совпадает с оболочкой клеточного ядра и существует в совокупности. Таким образом получается, что полости ретикулума открываются в межмембранную полость ядерной оболочки. Мембрана ЭПС обеспечивает перемещение элементов против градиента концентрации (от меньшей к большей). Площадь мембран эндоплазматической сети насчитывает более половины общей площади всех мембран клетки.

Большое количество веществ синтезируется на ее наружной поверхности. После чего они перемещаются внутрь и далее — к местам последующих биохимических трансформаций.

Цистерны

Они выглядят как сплющенный мембранный диск. Цистерны являются местом сбора белков, предназначенных для секреции, трансмембранных белков плазматической мембраны, а также белков лизосом и др. Достигнув созревания, белки транспортируются в органеллы по цистернам. Там и происходит их изменения: гликозилирование (присоединение составов сахаров к органическим молекулам) и фосфорилирование (перенос остатка фосфорной кислоты к субстрату).

Каналы

Внутренняя зона цитоплазмы заполнена огромным количеством мелких каналов, которые ветвятся, переплетаются  и соединяются друг с другом. Именно они и образуют сам ретикулум.

Во время синтеза белковой молекулы полипептидная цепочка с рибосомы погружается в канал ЭПС.

Трубочки

Их диаметр находится в пределах от 0,1 мкм до 0,3 мкм. Они заполнены гомогенным содержимым и осуществляют коммуникации между содержимым пузырьков эндоплазматической сети, внешней средой и ядром клетки.

Наглядное строение системы и расположение каждой из ее частей можно увидеть на схеме ниже:

В клетке липиды в отличие от углеводов выполняют функцию

Виды ЭПС

В клетке липиды в отличие от углеводов выполняют функцию

Ранее уже упоминалось, что ретикулум может быть как гладким, так и шероховатым. Оба из них присутствуют в каждой клетке, выполняя свои определенные функции.

Он появляется и развивается благодаря шероховатой сети во время освобождения ее от рибосом. Такая сеть состоит из трубочек со стенками из мембран, каналов и пузырьков меньшего размера, чем в шероховатой сети.

В ее функции входит обезвреживание ядовитых веществ и накапливание ионов. Основной функцией считается синтез жиров. Из-за этого гладкий ретикулум хорошо развивается в клетках, в которых происходит синтез и расщепление липидов. Например, клетки надпочечников, семенников, печени, мышечные клетки или эпителиальные клетки кишечника.

Он представляет собой сеть уложенных мембранных цистерн. На их внешней поверхности находится большое количество рибосом, которые, в свою очередь, синтезируют белки. Далее эти синтезируемые белки сразу попадают в каналы сети, приобретают третичную структуру и фосфолируются.

Функции в клетке

ЭПС является уникальной транспортной системой в клетке. Она осуществляет перемещение веществ цитоплазмы сквозь стенку мембраны, благодаря чему клетка и выполняет сложные функции.

Синтез

Синтез углеводов и липидов осуществляется на гладкой ЭПС. Он происходит с участием особых ферментов мембраны, которые обеспечивают репродукцию эндоплазматического ретикулума.

Также в агранулярной сети образуются гормоны. Такие, как, например, половые гормоны позвоночных животных или стероидные гормоны надпочечников.

Структурирующая функция

Она также может называться разделительной. С ее помощью цитоплазма системно распределяется и не смешивается. Структурирующая функция еще и предотвращает попадание случайных и ненужных веществ в органеллу.

Проведение импульсов возбуждения

Подобные импульсы возникают из-за разницы потенциалов поверхностей мембран. Например, в эндоплазматическом ретикулуме мышечных клеток больше ионов кальция, чем в цитоплазме. Так, выходя из его каналов, ионы начинают процесс сокращения мышечных волокон.

Значение ЭПС

Таким образом, эндоплазматическая сеть клетки выполняет множество необходимых функций для существования клеток. При его участии протекает транспортировка и синтез различных веществ, создание новой ядерной оболочки, накопление кальция.

К органеллам данной группы относятся эндоплазматическая сеть, рибосомы, комплекс Гольджи, лизосомы, пероксисомы. Они осуществляют синтез органических соединений, их транспорт в процессе химической доработки из одного участка канальцевой сети в другой, накопление, перемещение, упаковку и экзоцитоз готовых продуктов синтеза.

Эндоплазматическая сеть и рибосомы. Эндоплазматическая сеть представлена канальцами и цистернами, которые анастомозируют и формируют в гиалоплазме трехмерную сеть. В состав сети входят гранулярные (содержащие на внешних поверхностях мембран рибосомы) и агранулярные (без рибосом) участки.

Рибосомы синтезируют все разнообразие клеточных белков. На светооптическом уровне рибосомы неразличимы, об их количестве в клетке можно судить по интенсивности окраски цитоплазмы общегистологическими (базофилия) или специальными гистохимическими реактивами и флюорохромами, маркирующими РНК. На субмикроскопическом уровне рибосомы выглядят как осмиофильные черные точки (диаметром около 20-25 нм), а их рабочие комплексы — полисомы — как группы, или розетки, осмиофильных точек.

В клетке липиды в отличие от углеводов выполняют функцию

Компоненты рибосом создаются в разных участках клетки: рибосомальные РНК синтезируются в ядрышке; рибосомальные белки — в цитоплазме. Последние поступают в ядро, где комплексируются с молекулами РНК и объединяются в рибосомальные субъединицы. Затем субъединицы РНК транспортируются из ядра через поры и находятся в цитоплазме либо в диссоциированном (неактивном), либо ассоциированном друг с другом (активном) состоянии. Работающие органеллы состоят из двух ассоциированных (малой и большой) субъединиц, которые удерживаются в обратимо связанном состоянии с помощью катионов магния. Большую субъединицу рибосом образуют разные молекулы РНК, имеющие сложную вторичную и третичную структуру, в комплексе с рибосомальными протеинами. Большая субъединица значительно крупнее малой и имеет форму полушара. Малая субъединица выглядит в виде маленькой шапочки. При ассоциации субъединиц в рибосому происходит закономерное взаимодействие их поверхностей.

Между субъединицами работающей рибосомы имеет место строгое “разделение труда” — малая субъединица ответственна за связывание информационной РНК, большая — ведает образованием полипептидной цепи. В клетке нефункционирующие рибосомы находятся в диссоциированном состоянии, в связи с чем получают возможность постоянно обмениваться субъединицами и постоянно обновляться. В рабочем режиме рибосомы (от 3 до 20-30 в группе) образуют стабильный комплекс — полисому, в котором они связаны нитью информационной РНК.

• О степени развития в клетке гранулярной эндоплазматической сети можно судить по базофилии цитоплазмы, обусловленной присутствием большого количества рибосом; агранулярные участки эндоплазматической сети на светооптическом уровне не обнаруживаются. В большинстве клеток преобладает гранулярная сеть, и оба вида сети имеют диффузную организацию — их элементы располагаются в гиалоплазме свободно, без какой-либо упорядоченности. Синтез белка в гранулярной сети происходит на рибосомах и полисомах, а ее каналы и цистерны являются вместилищем и транспортными магистралями для перемещения белка в коплекс Гольджи для доработки.

Ширина и количество канальцев и цистерн сети в клетках варьируют в зависимости от их функционального состояния — при повышении функциональных нагрузок на клетку канальцы и цистерны сети становятся множественными и значительно расширяются. Канальцы эндоплазматической сети непосредственно связаны с перинуклеарным пространством клетки.

Значение гранулярной эндоплазматической сети состоит в синтезе мембранных белков и белков, предназначенных “на экспорт” и необходимых другим клеткам, либо используемых во внеклеточных физиологических реакциях. Этот вид сети присутствует во всех клетках организма человека (кроме зрелых спермиев), однако наиболее развит в тех клетках, которые специализированы на синтезе больших количеств белковых молекул. Таких видов клеток в организме человека сравнительно немного. Примером являются плазмоциты, синтезирующие антитела (или иммуноглобулины); клетки поджелудочной железы, вырабатывающие комплекс белковых пищеварительных ферментов (панкреатический сок); гепатоциты, синтезирующие широкий спектр белков плазмы крови, свертывающей и противосвертывающей систем, а также некоторые другие клетки. В этих клетках канальцы сети располагаются упорядоченно (в некоторых случаях — строго параллельно) в виде так называемой эргастоплазмы.

В малодифференцированных и неспециализированных клетках гранулярная эндоплазматическая сеть, как правило, слабо развита, в структуре клеток преобладают свободные поли- и рибосомы, обеспечивающие синтез белков, необходимых клетке для роста и дифференцировки.

Агранулярная эндоплазматическая сеть имеет вид коротких канальцев и пузырьков (везикул), которые диффузно располагаются по всей гиалоштзме.В большинстве клеток элементы агранулярной сети, как правило, немногочисленны. В клетках, вырабатывающих стероидные гормоны (клетки надпочечников, половых желез), агранулярная сеть хорошо развита и ее многочисленные пузырьки занимают большие площади, либо образуют муфты вокруг липидных включений — предшественников стероидных гормонов. В мембранах сети находятся ферменты стероидогенеза.

Помимо стероидогенеза, она участвует в синтезе и метаболизме липидов, полисахаров, триглицеридов, процессе детоксикации продуктов метаболизма лекарственных препаратов и эндогенных клеточных ядов. В канальцах агранулярной сети депонируются большие запасы катионов кальция.

– Также рекомендуем “Комплекс Гольджи. Строение комплекса гольджи. Лизосомы.”

Ядро, цитоплазматическая мембрана, цитоплазма

Клетка — основная функциональная единица организма. Ядро клетки служит хранилищем огромного объёма генетической информации и одновременно центром её активной экспрессии. Существует большое количество различных типов клеток (клетки эпителия, печени, нервных волокон и др.), особенности метаболизма которых обусловлены находящимися в их цитоплазме органеллами, а также множеством растворимых ферментов, характерных для каждого вида клеток.

Цитоплазматическая мембрана, или плазмолемма, — барьер для растворимых в воде молекул, который отделяет внутреннее содержимое клетки от внешней среды. Она состоит из двух параллельных рядов фосфолипидов, которые образуют гидрофобную липидную прослойку между двумя гидрофильными слоями из фосфатных групп.

Плазмолемма пронизана различными белками, гидрофобные части которых находятся внутри билипидного слоя, а гидрофильные — на внешней и внутренней поверхности мембра ны. Микроворсинки — удлинения на верхней (апикальной) части плазмолеммы, которые увеличивают поверхность мембраны и облегчают обмен молекулами.

Ядро клетки. Генетическая информация заключена в хромосомах, которые находятся в ядерном матриксе. Матрикс — сетчатый внутриядерный каркас, состоящий из белкового материала и тесно примыкающий к ядерной оболочке.
Ядрышком называют морфологически выраженную структуру внутри ядра, в которой происходит синтез рибосомальной РНК (рРНК). В ядре клеток человека обычно присутствует одно ядрышко, в котором во время интерфазы возникают ядрышковые организаторы акроцентрических хромосом.

Ядро окружено двойной мембраной, называемой ядерной оболочкой, которая пронизана ядерными порами.

В клетке липиды в отличие от углеводов выполняют функцию

Цитоплазма клетки. Цитоплазма состоит из гелеобразного цитозоля, содержащего запасы гликогена, липидные вкрапления и свободные рибосомы, который пронизан рядами взаимосоединённых волокон и трубочек, образующих цитоскелет. Основные структурные компоненты цитоскелета — микротрубочки, микрофиламенты и промежуточные филаменты.

Микротрубочки — прямые полые цилиндры, стенки которых состоят из чередующихся молекул а- и b-тубулина. Они исходят из клеточного центра (центросомы), который имеет пару центриолей— цилиндрических структур, образованных девятью триплетами микротрубочек. Подобное строение свойственно также базальным тельцам реснитчатого эпителия.
Сеть микротрубочек играет важную роль в поддержании структуры и размера клетки, а также при расхождении хромосом во время деления и движения ресничек и сперматозоидов.

Микрофиламенты представляют собой двуспиральные полимеры белка актина и находятся в основном по периметру клетки. Они участвуют в движении клетки и изменении её формы.
Промежуточные филаменты имеют трубчатую структуру и соединяют десмосомы. В зависимости от вида клетки в их состав входит один или несколько из пяти определённых белков.

Митохондрии — самые крупные и наиболее распространённые в цитоплазме органеллы, основной функцией которых служит обеспечение организма энергией посредством синтеза АТФ. Митохондрии — самовоспроизводящиеся полуавтономные органеллы, содержащие рибосомы и до десяти и более копий кольцевых нитей митохондриальной ДНК.

Данная ДНК кодирует митохондриальные гены. В митохондриях присутствуют ферменты, необходимые для функционирования цикла трикарбоновых кислот, а также большое количество ферментов, участвующих в окислении жирных кислот.

Пероксисомы частично отвечают за детоксикацию различных веществ (в том числе этанола), однако их основная задача — окисление жирных кислот.

Эндоплазматическая сеть (ЭПС) — основной центр синтеза белков и липидов, который также служит начальным этапом секреторного пути белков. ЭПС представляет собой обширный лабиринт из связанных с мембраной каналов, который соединяется непосредственно с ядерной оболочкой.

Вблизи ядра на поверхности ЭПС есть рибосомы (гранулярная ЭПС), в то время как на участках, расположенных дальше, рибосомы отсутствуют (агранулярная или гладкая ЭПС). ЭПС играет важную роль в нейтрализации токсинов. Белки, синтезируемые в ней, затем попадают в комплекс Гольджи — ряд расположенных друг над другом сплюснутых везикул. После этого белки депонируются или попадают в секреторные везикулы для осуществления экзоцитоза, т.е. выведения из клетки в ответ на внешнее воздействие.

Эндоцитоз. Эндоцитозом называют процесс поглощения и переработки клеткой компонентов окружающей среды. При опосредованном рецепторами пиноцитозе происходит захват мелких частиц путём образования везикулы с жидкостью на поверхности цитоплазматической мембраны и её последующего поглощения клеткой. При этом образуются окаймлённые впячивания. Более крупные частицы связываются с мембраной и поглощаются в составе фагоцитарных вакуолей (фаголизосом); растворы поглощаются при помощи жидкостного пиноцитоза.

Содержимое пиноцитарных и фагоцитарных везикул, которые часто называют эндосомами, обычно обрабатывают лизосомы, содержащие разрушающие ферменты — лизоцимы.

Межклеточные соединения. В случае плотного соединения образуется непроницаемая перемычка между внешней (апикальной) и базолатеральной поверхностями эпителиальных клеток. При липких соединениях клетки связаны с помощью опоясывающих (длинные волокна) и точечных (расположены непосредственно в месте скрепления) десмосом. Гемидесмосомы (полудесмо-сомы) соединяют эпителиальные клетки через базальные мембраны (производные экстрацеллюлярного матрикса).

Щелевые соединения (нексусы) возникают в комплексах соединённых клеток. При этом через поры (щели) возможно сообщение между соседними клетками.
Недостаточность функций лизоцимов — причина некоторых наследственных заболеваний, таких, как, например, болезни Тея—Сакса (ранняя детская амавротическая идиотия), Фабри (наследственный дистопический липоидоз) и Гоше (наследственный глюкоцереброзидоз). В результате нарушения процесса поглощения клеткой липопротеинов возникает наследственная гиперхолестеринемия. При синдроме Цельвегера, для которого характерны деформации лица, снижение мышечного тонуса, увеличение печени и кисты почек, отсутствуют пероксисомы.

Причина болезни Шарко—Мари—Тута, сцепленной с Х-хромосомой, — дефект белка, участвующего в щелевом соединении клеток.
Большинство лекарственных препаратов вступают во взаимодействие с рецепторами цитоплазматической мембраны. Различные противоопухолевые препараты, такие, как винкристин или винбластин, повреждают систему микротрубочек, в то время как колхицин, применяемый для исследования хромосом, угнетает клетки во время метафа-зы митоза. Клофибрат снижает продукцию дополнительных пероксисом, его используют для снижения уровня липопротеинов в сыворотке крови.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

– Также рекомендуем “Строение хромосом: хроматин, центромера, теломера”

Типовые вопросы части А

A1 Водородные связи между полинуклеотидными нитями в молекуле ДНК образуются между:

A2 В клетке липиды, в отличие от углеводов, выполняют функцию:

A3 В молекуле белка пептидными связями удерживается структура:

A4 Мономерами в клетке являются:

A5 Какую функцию выполняют углеводы, входящие в состав плазматической мембраны?

A6 Самым распространенным химическим элементом организма является:

A7 Вода, играющая большую роль в поступлении веществ в клетку, выполняет функцию:

A8 Для сокращения сердечной мышцы необходим ион:

A9 Примерно 3-5 тысяч нуклеотидов входит в состав молекулы:

A10 Белки, ускоряющие химические реакции, называются:

Ретикулум выполняет достаточно сложные задачи по внутриклеточному синтезу и перемещению полезных компонентов цитоплазмы. Он также участвует в накоплении созданных продуктов. Активно участвует и в построении ядерной оболочки, к примеру, после митоза.

Оба варианта эндоплазматической сети выполняют равные задачи. Синтезируют и перемещают вещества, а, следовательно, ЭС является на клеточном уровне транспортной системой, которая в значительной степени универсальна.

Гладкая и шероховатая ЭС, имеющимся мембранным аппаратом, а также матриксом выполняют равноценные функциональные обязанности. Задачи ЭПР следующие:

Помимо перечисленных каждый вариант ЭС выполняет специфические задачи.

Образование эндоплазматической сети

Основные составляющие ЭПС – белки и липиды. Первые транспортируются из мембранных рибосом, вторые синтезируются самой эндоплазматической сетью с помощью ее ферментов. Так как гладкая ЭПС (аПС) не имеет на поверхности рибосом, а сама синтезировать белок не способна, она образуется при отбрасывании рибосом сетью гранулярного типа.

Комплекс Гольджи: строение и особенности

Эндоплазматическая сеть в клетке

Рассматриваемая нами органелла учёными выявлена в цитоплазме, она же окружает содержимое ядра. Покровы органоида-ЭПР включают рибосомы. Из мембранных конструкций структурируются митохондрии клеточных субстанций.

Функции шероховатой (гранулярной) эндоплазматической сети

Также, как и агранулярная, грЭС имеет свойственные только для себя самой функции:

Можно проследить, что функции грЭС направлены в основном на регуляцию транспорта белков, синтезирующихся на поверхности эндоплазматической сети в рибосомах. Они преобразуются в третичную структуру, скручиваясь, именно в ЭПС.

Типичное поведение белка заключается в поступлении в гранулированную ЭПС, после в аппарат Гольджи и, в конечном шаге, в выходе наружу к другим органоидам. Также он может отложиться, как запасной. Но часто, в процессе перемещения, он способен кардинально изменить состав и внешний вид: фосфориллироваться, например, или преобразоваться в гликопротеид.

Оба типа эндоплазматической сети способствуют детоксикации клеток печени, то есть выводу из нее ядовитых соединений.

ЭПС пропускает сквозь себя вещества не во всех участках, благодаря чему количество соединений в канальцах и снаружи их разная. По такому же принципу работает проницаемость внешней мембраны. Эта особенность играет определенную роль в жизнедеятельности клетки.

В клеточной цитоплазме мышц гораздо меньше кальций-ионов, чем в ее эндоплазматической сети. Следствием этого является удачное сокращение мышц, ведь именно кальций при выходе из каналов ЭПС обеспечивает этот процесс.

Не нашли ответ?

Просто напиши,с чем тебе нужна помощь

Мне нужна помощь

Функции гладкой (агранулярной) эндоплазматической сети

АЭС, не считая особенностей, свойственных для всех типов ЭПС, обладает собственными следующими функциями:

Фенобарбитал разрушается в клетках почек, а именно, в гепатоцитах, вследствие воздействия ферментов оксидазы.

АЭС способствует синтезу гликогена в печени, благодаря действию ферментов.

Задай вопрос специалистам и получи ответ уже через 15 минут

Агранулярная эндоплазматическая сеть

Расположена в клеточных образованиях: надпочечников — производящих стероидные гормоны, мышечных структур — участвующих в обмене кальция, железистых конструкций желудка — вырабатывающих ионы хлора. Среди прочих видов мембран ЭПР включает: разветвлённые мембранные трубочки, а также везикулы, цистерны, обеспечивающие перемещение синтезированных веществ.

Гладкий ретикулум весьма чувствителен к факторам внешней среды. По этой причине легко подвергается повреждению. Последнее ведёт к ослаблению клетки, а впоследствии и всего организма. Это может повлечь развитие различных болезненных процессов.

Строение эндоплазматической сети

Эндоплазматическая сеть или ЭПС – это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.

ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс – плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.

Липиды и белки – основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.

В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название – переходящая. Она находится в зоне стыка двух видов сети.

Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.

Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.

Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.

Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип – везикулы – небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.

Так и не нашли ответ на вопрос?

Просто напишите,с чем нужна помощь

Функции гладкой эндоплазматической сети

Индивидуальными задачами сетки гладкого типа являются следующие:

Гладкого типа ЭПР внутри гепатоцитов активно обезвреживает всевозможные яды. При этом ферменты органоида присоединяют к молекулам токсичных компонентов специфические гидрофильные радикалы. Вредоносные для организма токсичные вещества становятся растворимыми в крови и моче. Поэтому довольно скоро выводятся из тела.

Строение эндоплазматической сети

Функции гладкой (агранулярной) эндоплазматической сети

Функции шероховатой (гранулярной) эндоплазматической сети

Образование эндоплазматической сети

Строение ретикулума

Органелла имеет следующие варианты строения:

Выделяют также переходящий или транзиторный вариант ЭПС располагающийся в зоне перехода между вышеуказанными видами клеточного ретикулума.

Функции шероховатой эндоплазматической сети

Специфические функции характерны также и для шероховатой (гранулярной) ЭПС. В их числе следующие:

Базовой задачей сетки зернистого типа становится перемещение протеинов, синтезированных в рибосомах. Последние расположены на поверхности ретикулярной системы. При этом синтезированный протеин поступает внутрь конструкции ЭПС, где скручиваясь приобретает третичную структуру, пр.

Протеины, транспортируемые к цистернам значительно трансформируются по ходу перемещения. Проходят фосфорилирование, гликозилирование, пр. Обычный вариант перемещения для протеинов — это движение через шероховатый тип и эндоплазматическую сеть в комплекс Гольджи, через который они выводятся из клетки либо в ней же поступают к прочим органеллам, к примеру, лизосомам. Могут также откладываться внутри клеточной структуры в виде запасных гранул.

В гепатоцитах обе ЭПС: зернистого и гладкого типов принимают непосредственное участие в ходе детоксикации многочисленных ядовитых веществ, которые впоследствии подлежат выведению из клетки.

Внешняя мембрана и ретикулярная имеют избирательную проницаемость. По этой причине концентрация компонентов внутри и снаружи конструкций каналов сетки не равны, что непосредственно оказывает влияние на функционирование клетки.

Сетка содержащаяся в мышечных волоконных структурах содержит значительно большее количество ионов кальция, нежели цитоплазма. Между внутренней и наружной поверхностями сетки создаётся разница потенциалов. Такая система позволяет проводить импульсы. Так происходит процесс сокращения волоконных структур мышц.

Нет времени решать самому?

Наши эксперты помогут!

Синтез эндоплазматической сети

Внутренними ферментами самой же сетки производятся липидные её составляющие. Белковые составляющие поступают из рибосом, размещённых на её мембранах. При этом аЭС собственные протеины производить не имеет возможности, поскольку в своём составе не содержит предназначенные для этих целей структуры. Синтез рассматриваемой органеллы производится за счёт использования резервов рибосомального аппарата грЭС — так характеризуют этот процесс исследователи.

В таблице представляем читателю особенности строения и функций эндоплазматической сети:

Функции ЭПС

В первую очередь эндоплазматическая сеть – синтезирующая система. Но также она не реже занимается транспортом цитоплазматических соединений, что делает всю клетку способной на более сложные функциональные особенности.

Вышеописанные возможности ЭПС свойственны для любого из ее типов. Таким образом, эта органелла – универсальная система.

Общие функции для гранулярной и агранулярной сети:

Помимо основных особенностей, каждый род эндоплазматических сетей обладает собственными специфическими функциями.

Величина её развитости, зависит напрямую от специализации клетки. Не содержится ЭПР исключительно в сперматозоидах. Особенно развита грЭС в клеточных образованиях следующих органов: поджелудочной железе — производящей ферменты для пищеварения, печени — восполняющей сывороточные белки-альбумины, фибробластах — продуцирующих клеточный коллаген, плазматических клетках — неустанно синтезирующих иммуноглобулины, пр. На поверхности грЭС (гранулярной ЭС) прикрепляются рибосомы — это молекулы шарообразной формы, которые образованы особыми рибонуклеиновыми кислотами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *