1. Неврология. Общие данные. Нейрон. Нейроцит. Синапс.
2. Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон..
3. Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация ( связь ).
4. Замкнутая кольцевая цепь рефлексов. Вегетативная ( автономная ) и анимальная нервная система.
5. Развитие нервной системы. Филогенез нервной системы.
6. Трубчатая нервная система. Цефализация.
7. Развитие отделов мозга: промежуточный, передний, конечный. Кортикализация. Новый мозг.
8. Первая сигнальная система. Вторая сигнальная система.
9. Эмбриогенез нервной системы.
Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора.
От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Внутри нейронов относительно высока концентрация ионов К+, но мало ионов Na+ и CI-, снаружибольше натрия и хлора и мало калия. В состоянии покоя мембрана более проницаема для ионов К+ чем для ионов Na+. Поэтому ионы калия стремятся выйти из клетки по градиенту концентрации, заставляющий выходить ионы К+ наружу. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста (1) для калиевого электрода.
VK = —– ln ——-, (1)
где VK – равновесный потенциал для ионов К+, КН и КВ – активность калия снаружи и внутри волокна, R – газовая постоянная, Т – абсолютная температура и F – постоянная Фарадея. По данным различных авторов, эта величина соответствует 70-75 мВ. Для объяснения реверсии мембранного потенциала (МП) во время развития импульса предполагается, что на гребне спайка мембрана избирательно проницаема для ионов Nа+. Разность потенциалов при этом выражается формулой Нернста для натриевого электрода:
VNa = —– ln ——-. (2)
Снижение потенциала покоя (ПП) до определенной величины ведет к проницаемости мембраны к ионам натрия, которые входя в клетку вызывают дальнейшее снижение ПП. Повышенная проницаемость мембраны к ионам Nа+ сменяется повышением ее проницаемости к ионам К+. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой – для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания – места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». В концевой пластинке под действием нервного импульса открываются потенциал-зависимые кальциевые каналы, и ионы Са2+ входят в нервное окончание, в результате чего нервная клетка освобождает медиатор – ацетилхолин (АХ).
Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось.
Многочисленными работами показана необходимость притока ионов Са2+ в окончание аксона для синаптической передачи. Показано, что если во внеклеточной среде кальций отсутствует, АХ не освобождается и передача сигнала не происходит и, во-вторых, если искусственно ввести Са2+ в наружную среду, омывающий нервно-мышечный препарат при помощи микроаппликации, выход нейромедиатора происходит спонтанно.
Во множестве животных клеток ион Са2+ служит универсальным посредником, передающим внутриклеточным механизмам сигналы, поступившие к клетке извне. Для регуляции уровня кальция в клетке имеются такие механизмы, которые управляют движением ионов Са2+ через клеточную плазматическую мембрану и саркоплазматического ретикулума, являющиеся своеобразными емкостями для хранения запасов кальция. Чувствительность клетки к очень небольшим изменениям концентрации Са2+ обусловлена тем, что его нормальная внутриклеточная концентрация очень мала (не более 10-7 М), в то время как вне клетки его концентрация выше 10-3 М. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. При таком концентрационном градиенте, когда снаружи кальция больше чем внутри через открытые каналы внутрь аксона переходит достаточно ионов Са2+. Это необходимо для того, чтобы концентрация ионов Са2+ внутри окончания увеличилась на 1-2 порядка, в результате чего клетка начнет выделять нейромедиатор. Концентрация свободных ионов Са2+ возрастает лишь на короткое время, так как Са-связывающие белки и митохондрии быстро поглощают кальциевые ионы перешедшие в нервное окончание. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии – сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями (квантами). Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки (МПКП). Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора – АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса.
Рt = е — (3)
По нашим данным амплитуда МПКП имеет величину порядка 1 мВ и заметно колеблется от 0,1 до 4 мВ. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки (ПКП) многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. В нормальных условиях такой ПКП состоит из более чем из сотни наложенных друг на друга МПКП. Если предположить, что ПКП состоит из спонтанно возникающих МПКП, то их число в одиночном ПКП должно испытывать отклонения от среднего значения, которые описываются формулой Пуассона. Допустив, что среднее число МПКП в ПКП равно m, тогда вероятность Рх наблюдать ПКП, содержащей х МПКП, будет
Рх = —— e-m, (4)
где х – порция и m – среднее число порций, освобождаемых при одном импульсе. В виду того, что вероятность отклонений х от m для больших значений мала, возникла необходимость снизить квантовый состав ПКП за счет снижения концентрации Са2+ и повышения концентрации Mg2+. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора.
Библиографическая ссылка
M. ИЗУЧЕНИЕ МЕХАНИЗМА ПЕРЕДАЧИ ИНФОРМАЦИИ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ // Успехи современного естествознания. – 2006. – № 9.
– С. 18-20;
URL: https://natural-sciences.ru/ru/article/view?id=11302 (дата обращения: 26.06.2023).
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)
Резюме по рефлекторной дуге
Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс – это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон (чувствительный) и последний нейрон (двигательный или секреторный), называют рефлекторной дугой.
В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями – рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах (мышцах и др.). Простейшая рефлекторная дуга состоит из трех нейронов – чувствительного, вставочного и двигательного (или секреторного).
Тело первого нейрона (афферентного) находится в спинномозговом узле (или чувствительном узле черепного нерва). Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего (чувствительного) корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру.
В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего (двигательного) нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу.
Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным (чувствительным) и эфферентным (двигательным или секреторным) нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы.
Учебное видео – соматическая рефлекторная дуга
– Также рекомендуем “Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация ( связь ).”
Редактор: Искандер Милевски. Дата последнего обновления публикации: 20.8.2020
Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью (например, кожей), а другой с помощью своего нейрита оканчивается в мышце (или железе). При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении (центрипетально) к рефлекторному центру, где находится соединение (синапс) обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно (центрифугально) к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный.
Кроме простой (трехчленной) рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов (И. П. Павлов).
Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов.
1. Рецептор (восприниматель), трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным (центростремительным, или рецепторным) нейроном, распространяющим начавшееся возбуждение (нервный импульс) к центру; с этого явления начинается анализ (И. П. Павлов).
2. Кондуктор (проводник), вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. е. переключение возбуждения с центростремительного нейрона на центробежный. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» (И. П. Павлов). Поэтому И. П. Павлов называет этот нейрон контактором, замыкателем.
3. Эфферентный (центробежный) нейрон, осуществляющий ответную реакцию (двигательную или секреторную) благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма:
1) с наружной, кожной, поверхности тела (экстероцептивное поле) при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды;
2) с внутренней поверхности тела (интероцептивное поле), принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и
3) из толщи стенок собственно тела (проприоцептивное поле), в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами.
Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект.