Глава 4. Световые явления
§ 67. Преломление света. Закон преломления света
Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.
Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света.
Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 000 км/с, а в стекле — 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света.
Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС — угол падения (α), угол DOB — угол преломления (γ).
Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.
Вода — среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145):
γ < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.
При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.
Для любой пары веществ с различной оптической плотностью можно написать:
где n — постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.
Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
В атмосфере Земли происходит преломление света, поэтому мы видим звёзды и Солнце выше их истинного расположения на небе.
Вопросы
1. Как меняется направление луча света (см. рис. 144) после того, как в сосуд наливают воду?
2. Какие выводы получены из опытов по преломлению света (см. рис. 144, 145)?
3. Какие положения выполняются при преломлении света?
Упражнение 47
1. Угол падения луча из воздуха в стекло равен 0°. Чему равен угол преломления?
2. Перечертите в тетрадь рисунок 147. Для каждого случая начертите примерно преломлённый луч, считая, что все изображённые тела изготовлены из стекла.
3. Положите на дно чайной чашки монету и расположите глаз так, чтобы край чашки закрывал её. Если в чашку налить воду, то монета станет видна (рис. 148). Почему?
4. В оптике часто приходится иметь дело с прохождением света сквозь тело, имеющее форму призмы, клина (рис. 149, а). Луч, падающий на призму (например, на её боковую грань), преломляется дважды: при входе в призму и при выходе из неё.
Перечертите в тетрадь изображённое на рисунке 149, (б) сечение призмы (треугольник) и падающий на её грань луч. Постройте ход луча сквозь призму. Покажите, что при прохождении сквозь треугольную призму такой луч отклоняется к основанию треугольника.
5. В каждой из трёх закрытых коробок (они показаны на рисунке 150 в виде чёрных квадратов) находится одна или две треугольные призмы; показан ход лучей через эти призмы. Нарисуйте расположение призм в этих коробках.
Физические опыты
Для решения задания №18 требуется знание основных физических понятий и законов, а также владение приборами и приспособлениями, использующимися для проведения физ.опытов. Теоретические материалы, касающиеся физических законов, можно найти в разделах теории к другим заданиям (по соответствующим темам). Информация о физ.приборах и устройствах, а также о понятиях цены деления и погрешности приведена в разделе теории к этому заданию.
Теорию к заданию №18 ОГЭ по физике смотрите здесь.
Разбор типовых вариантов заданий №18 ОГЭ по физике
Демонстрационный вариант 2018
Запишите результат измерения атмосферного давления с помощью барометра-анероида (см. рисунок), учитывая, что погрешность измерения равна цене деления.
- (750 ± 5) мм. рт. ст.
- (755 ± 1) мм. рт. Ст
- (107 ± 1) Па
- (100,7 ± 0,1) Па
Алгоритм решения:
- Определяем значения на шкалах прибора, отображенные стрелкой.
- Определяем цену деления, которой по условию соответствует погрешность измерения.
- Находим результаты измерения и номер прав.ответа.
Решение:
- По верхней шкале, на которой определяется давление в паскалях, стрелка указывает на значение ~100,7. По нижней, отображающей давление в мм рт.ст., значение равно ~755.
- Для определения цены деления каждой из шкалы возьмем пару соседних чисел на ней и разделим на кол-во делений между ними. Получим, что цена деления нижней шкалы составляет (760–750):10=1 мм рт.ст, верхней – (101–100):10=0,1 Па. Но вверху на приборе имеется оговорка для верхней шкалы, а именно: «х 1000 Па», которая означает, что показания измеряются не а Па, а в кПа.
- Соответственно, имеем: на верхней шкале стрелка показывает (100,7±0,1) кПа, на нижней – (755±1) мм рт.ст. Тогда прав.ответ – 2.
Первый вариант (Камзеева, № 1)
Необходимо экспериментально обнаружить, зависит ли сила сопротивления, препятствующая падению тела в воздухе, от размера тела. Какие из указанных шаров можно использовать?
- А и Б
- А и В
- А и Г
- В и Г
Алгоритм решения:
- Выясняем, каков объективный подход для корректного описания зависимости силы сопротивления.
- Определяем параметры, которые должны быть у шаров одинаковыми, и параметры, которые должны различаться, для проведения эксперимента. Находим прав.вариант ответа.
Решение:
- Поскольку требуется обнаружить зависимость силы сопротивления именно от размера, то это означает, от других параметров у этой силы зависимости быть не должно. Только в этом случае можно определить наличие и величину зависимости объективно.
- В условии приведены 2 параметра, от которых сила сопротивления может зависеть, – размер шаров и их массы. Отсюда делаем вывод: для чистоты эксперимента массы шаров должны быть одинаковыми. А вот размеры для опыта как раз следует взять различные. Этому условию соответствую 2 пары шаров – А, В и Б, Г. Поскольку вторая пара в вариантах ответов не фигурирует, то прав.вариант – 2.
Второй вариант (Камзеева, № 5)
На рисунке представлен опыт по изучению отражения и преломления светового луча на границе воздух-стекло.
Угол отражения примерно равен
- 200
- 400
- 500
- 700
Алгоритм решения:
- Анализируем рисунок, дополняем его элементами, необходимыми для определения угла отражения.
- Применив з-н отражения света, находим угол отражения. Фиксируем прав.ответ.
Решение:
1. Для определения величины угла отражения проведем нормаль (перпендикуляр) к плоскости стекла (показано на рисунке зеленым):
2. Согласно з-ну отражения света, угол отражения – это угол между нормалью и лучом отражения (показано зеленой дугой). На рисунке видно, что он составляет примерно 700. Соответственно, прав.вариант ответа – 4.
Третий вариант (Камзеева, № 6)
Ученик провел эксперимент по изучению выталкивающей силы, действующей на тело по мере погружения тела в жидкость. На рисунке представлен график зависимости силы Архимеда от объема погруженной в жидкость части тела (цилиндра).
Из предложенного перечня выберите утверждение, соответствующее проведенным исследованиям.
- Выталкивающая сила не зависит от материала, из которого изготовлен цилиндр.
- Выталкивающая сила зависит от объема погруженной в жидкость части цилиндра.
- Выталкивающая сила уменьшается при увеличении объема погруженной части цилиндра.
- Выталкивающая сила зависит от рода жидкости.
Алгоритм решения:
1–4. Анализируем утверждения 1–4 и определяем истинность каждого из них в контексте проведенного эксперимента.
Решение:
- Утверждение 1 нельзя безоговорочно назвать верным или ложным. Дело в том, что его истинность невозможно проверить, поскольку в данном эксперименте используется один и тот же цилиндр, т.е. всякий раз физ.тело с одинаковыми свойствами. Поэтому правильным это утверждение здесь считать нельзя.
- Утверждение 2 верно, т.к. исследование зависимости выталкив.силы от объема как раз и было сутью эксперимента, и график наглядно демонстрирует наличие такой зависимости.
- Утверждение 3 неверно. Это следует из приведенного графика, на котором видно, что выталкивающая сила, напротив, при увеличении объема увеличивается (до тех пор, пока цилиндр не окажется погруженным полностью).
- Утверждение 4 хоть и верно по сути, но, как и в случае утверждения 1, его невозможно подтвердить или опровергнуть в ходе заданного эксперимента. Поэтому это утверждение нельзя считать правильным.
Ученик провёл опыт по преломлению монохроматического света, представленный на фотографии.
Затем вся установка была помещена в воду. Как изменятся частота световой волны, длина волны, падающей на стекло, и угол преломления?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
📜Теория для решения:
Отражение и преломление света. Законы геометрической оптики.
Посмотреть решение
Описать эксперимент, проведенный учеником.
Установить, как изменяется частота световой волны при перемещении установки из воздуха в воду.
Установить, как при этом изменяется длина световой волны.
Установить, как при этом изменяется угол преломления.
Ученик направил луч монохроматического света на стекло под углом 30 градусов к нормали. При этом луч вышел под углом 20 градусов. Это говорит о том, что свет из менее плотной оптической среды попал в более плотную.
Частота световой волны — характеристика, не зависящая от условий распространения этой волны. Поэтому при перемещении установки из воздуха в воду частота останется прежней.
Чтобы установить, как меняется длина световой волны и угол преломления. Нужно рассчитать изменение показателя преломления света. Относительный показатель преломления в первом и втором опыте будет соответственно равен:
Относительные показатели преломления можем выразить через абсолютные:
Абсолютный показатель преломления — табличная величина. Мы возьмем приблизительный значения: для воздуха — 1, для воды — 1,33, для стекла — 1,5. В действительности абсолютный показатель преломления стекла может составлять от 1,43 до 2,17. Но это не столь важно, поскольку важно лишь то, что он в любом случае больше абсолютного показателя преломления воды.
Видно, что при перемещении из воздуха показатель преломления уменьшился. Тогда:
Так как числитель в левой части уравнения остался прежним, а число в правой части уменьшилось, то синус угла преломления увеличился. Поскольку синус угла находится в прямой зависимости от величины угла, то и угол преломления увеличился.
Длина волны определяется формулой:
Учтем, что скорость распространения света в более плотной среде уменьшается. Если скорость уменьшилась, то длина воды тоже уменьшилась, поскольку между ними существует прямо пропорциональная зависимость.
Ответ: 321
Основные законы геометрической оптики были известны задолго до установления физической природы света. Большая часть из них выводятся из общего принципа, описывающего поведение волн. Впервые этот принцип выдвинул современник Ньютона Христиан Гюйгенс.
Чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t + ∆t, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Этот принцип подходит для описания волн любой природы (световых, механических, электромагнитных и пр.).
Для механических волн принцип Гюйгенса имеет наглядное толкование: частицы среды, до которых доходят колебания, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.
Закон прямолинейного распространения света
Опытным доказательством этого закона служат резкие тени, отбрасываемые непрозрачными телами при освещении светом источника небольших размеров («точечного источника»).
Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет.
Пример №1. Здание, освещенное солнечными лучами, отбрасывает тень длиной L = 36 м. Вертикальный шест высотой h = 2,5 м отбрасывает тень длиной l = 3 м. Найдите высоту H здания.
Так как шест и здание расположены вертикально, они параллельны. Так как на них светит один и тот же источник света, то угол падения лучей одинаков. Следовательно, треугольники, образованные стеной зданий, лучом солнца и землей, а также землей, лучом солнца и шестом, подобны. Отсюда можно сделать вывод, что отношение высоты здания к высоте шеста будет отношению длины тени здания к длине тени шеста:
Закон отражения света
Рассмотрим отражение плоской волны (см. рис. ниже).
- MN — отражающая поверхность.
- A1A и B1B — два параллельных луча падающей плоской волны.
- AC — волновая поверхность плоской волны.
- и — угол падения и отражения лучей A1A и B1B.
Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред. Различные участки волновой поверхности AC достигают отражающей границы неодновременно. Возбуждение колебаний в точке A начинается раньше, чем в точке B, на время ( — скорость волны).
В момент, когда волна достигнет точки B, и в этой точке начнется возбуждение колебаний, вторичная волна в точке A уже будет представлять собой полусферу радиусом r = AD = v∆t = CB. Радиусы вторичных волн от источников, находящихся между точками A и B, меняются так, как показано на рисунке выше.
Огибающей вторичных волн является плоскость DB, касательная к сферическим поверхностям. Она является волновой поверхностью отраженной волны. Отраженные лучи AA2 и BB2 перпендикулярны волновой поверхности DB. Между ними образуется угол , являющийся углом отражения.
Так как AD = CB и треугольники ADB и ACB прямоугольные, то углы DBA и CAB равны. Но угол , а как углы с перпендикулярными сторонами. Следовательно, .
Пример №2. Луч света падает на плоское зеркало. Угол падения α равен 20°. Чему равен угол между падающим и отражённым лучами?
Поскольку, согласно закон отражения света, угол падения равен углу отражения, то угол между падающим и отражённым лучами равен удвоенному углу α. Следовательно, он равен 40°.
Закон преломления света
На границе двух разнородных сред свет меняет направление распространения. Часть его энергии возвращается в первую среду, то есть, происходит отражение света. Если же вторая среда прозрачна, то часть света проходит через границу, разделяющую первому и вторую среду. При этом он меняет свое направление. Это явление называется преломлением света.
Преломление света на границе двух сред легко продемонстрировать с помощью стакана, воды и карандаша. Если опустить карандаш в пустой стакан, то он будет выглядеть таким же прямым, как и всегда (см. рисунок слева). Если же опустить карандаш в стакан, заполненный водой, мы увидим, что его часть под водой будто бы «преломилась».
Закон преломления света, который определяет взаимное расположение луча падающего, луча преломленного и перпендикуляра, восстановленного в точке падения, был открыт опытным путем в XVII веке. Но его можно доказать, основываясь на принципе Гюйгенса.
Известно, что скорость света достигает максимального значения только в вакууме. При распространении в среде скорость света снижается. Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость распространения волны в первой среде как , а во второй — как .
Пусть на плоскую границу раздела двух сред (к примеру, из воздуха в воду) падает плоская световая волна (см. рисунок выше). Волновая поверхность AC перпендикулярна лучам A1A и B1B. Поверхности MN сначала достигнет луч A1A. B1B достигнет ее через некоторое время, которое можно определить отношением:
В момент, когда вторичная волна в точке B только начинает возбуждаться, волна от точки A уже имеет вид полусферы, радиус которой определяется выражением:
Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае, ею является плоскость BD. Она является огибающей вторичных волн.
Угол падения α равен CAB в треугольнике ABC (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно:
Угол преломления равен углу ABD в треугольнике ABD. Поэтому:
Поделим первое выражение на второе и получим:
Пример №3. Угол падения параллельных лучей на плоскопараллельную пластинку равен 60о. Найдите расстояние между точками, в которых из пластины выходят параллельные лучи, если расстояние между лучами, прошедшими сквозь пластину, равно 0,7 м.
Сначала построим рисунок хода лучей до пластины, внутри нее и после нее. Расстояние между лучами, прошедшими сквозь пластину, обозначим за l. Оно равна длине перпендикуляра, соединяющего эти лучи.
Значение величины угла , который составляет нормаль к пластине и направлением распространения луча в ней, определяется законом преломления света:
Луч выходит из пластины под некоторым углом таким, что:
Отсюда: или . Если вспомнить геометрические законы, можно сделать вывод, что расстояние между пластинами, являющееся гипотенузой прямоугольного треугольника, можно вычислить путем деления катета на косинус угла между ним и гипотенузой:
Величина n — относительный показатель преломления.
Физический смысл показателя преломления заключается в том, что он равен отношению скоростей света в средах, на границе между которыми происходит преломление.
Различают также абсолютный показатель преломления — показатель преломления среды относительно вакуума. Он равен синусу угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.
Поскольку в вакууме скорость света максимальна, абсолютный показатель преломления можно выразить формулой:
где — скорость света в среде, c — скорость света в вакууме.
Между абсолютными и относительными показателями преломления есть взаимосвязь. Пусть скорость распространения света в первой среде равна , во второй — . Тогда абсолютные показатели преломления для первой и второй среды равны:
Тогда относительный показатель преломления при переходе света из первой среды во вторую будет равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:
Пример №4. Определить показатель преломления воды относительно алмаза.
Абсолютные показатели преломления воды и алмаза — постоянные табличные величины.
Полное отражение
Закон преломления света позволяет объяснить интересное и практически важное явление — полное отражение света.
При прохождении света из оптически менее плотной среды в более плотную, к примеру, из воздуха в стекло или воду, . Следовательно, согласно закону преломления показатель преломления n > 1. Поэтому α > β (см. рисунок а). В результате преломления луч приближается к перпендикуляру, восстановленному к точке падения луча.
Если же направить луч света в обратном направлении — из оптически более плотной среды в оптически менее плотную вдоль ранее преломленного луча (см. рисунок б), то закон преломления запишется следующим образом:
Преломленный луч по выходе из оптически более плотной среды будет направлен по линии ранее падавшего луча, поэтому α < β, т. е. преломленный луч в этом случае отдаляется от перпендикуляра, восстановленного в точке падения к границе раздела сред. По мере увеличения угла α угол преломления β также увеличивается. При этом, согласно закону преломления света, он всегда будет больше угла α. Наконец, при некотором угле падения α значение угла преломления β приблизится к 90°, и преломленный луч будет направлен почти по границе раздела двух сред (см. рисунок в). Наибольшему возможному углу преломления β = 90° соответствует угол падения α0.
Попробуем выяснить, что произойдет при α > α0. При падении света на границу двух сред световой луч, как мы уже говорили ранее, частично отражается и частично преломляется. Но при α > α0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.
Примеры полного отражения света:
- блеск от ограненного алмаза;
- блеск капель росы на солнце;
- внутреннее отражение предметов, находящихся под водой.
При sin β = 1 (что соответствует углу 90°) угол полного отражения можно определить по формуле:
Пример №5. Луч света, идущий из толщи воды, полностью отражается от ее поверхности. Выйдет ли луч в воздух, если на поверхность воды налить слой кедрового масла?
Синус угла полного отражения для луча, идущего из воды к воздуху:
где — показатель преломления воды.
Запишем закон преломления света для случая, когда на поверхность воды налито масло:
Тогда синус угла полного отражения для луча, идущего из воды к маслу:
где — показатель преломления масла.
Эта формула соответствует случаю, когда угол является углом полного отражения. Следовательно, луч света за пределы масляной пленки в воздух не выйдет.
Практическое применение явления полного отражения света
Явление полного отражения света применяют в волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон — световодов. Световод — это стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления.
За счет многократного полного отражения свет может быть направлен, либо по прямому, либо по изогнутому пути (см. рисунок слева). Волокна собираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (см. рисунок справа). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.
В последнее время волоконная оптика широко используется для быстрой передачи компьютерных сигналов. По волоконному кабелю передается модулированное лазерное излучение.
Преломление света.
-
Закон преломления (частный случай).
-
Обратимость световых лучей.
-
Закон преломления (общий случай).
-
Полное внутреннее отражение.
-
Разберем задачи ЕГЭ по теме: Преломление света.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.
На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление – свет, переходя в другую среду, меняет направление своего распространения.
Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда – читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет – во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.
Закон преломления (частный случай).
Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.
Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. .
В точке падения
проведён перпендикуляр (или, как ещё говорят, нормаль)
к поверхности среды. Луч
, как и раньше, называется падающим лучом, а угол
между падающим лучом и нормалью – углом падения. Луч
– это преломлённый луч; угол
между преломлённым лучом и нормалью к поверхности называется углом преломления.
Всякая прозрачная среда характеризуется величиной
, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла
, а для воды
. Вообще, у любой среды
; показатель преломления равен единице только в вакууме. У воздуха
, поэтому для воздуха с достаточной точностью можно полагать в задачах
(в оптике воздух не сильно отличается от вакуума).
Закон преломления (переход “воздух–среда”).
1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:
.
Поскольку
из соотношения следует, что
, то есть
– угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.
Показатель преломления непосредственно связан со скоростью
распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме:
. И вот оказывается,что
.
Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы и :
.
Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме
. Приняв это во внимание и глядя на формулу , делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.
Обратимость световых лучей.
Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.
Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.
Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. ) Единственное отличие рис. от рис. состоит в том, что направление луча поменялось на противоположное.
Раз геометрическая картинка не изменилась, той же самой останется и формула : отношение синуса угла
к синусу угла
по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол
стал углом падения, а угол
– углом преломления.
В любом случае, как бы ни шёл луч – из воздуха в среду или из среды в воздух – работает следующее простое правило. Берём два угла – угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.
Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.
Закон преломления (общий случай).
Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления
. Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.
Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. ). В этом случае угол падения больше угла преломления:
.
Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. ). Здесь угол падения меньше угла преломления:
Оказывается, оба этих случая охватываются одной формулой – общим законом преломления, справедливым для любых двух прозрачных сред.
Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:
.
Нетрудно видеть, что сформулированный ранее закон преломления для перехода “воздух–среда” является частным случаем данного закона. В самом деле, полагая в формуле
, мы придём к формуле .
Вспомним теперь, что показатель преломления – это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в , получим:
.
Формула естественным образом обобщает формулу . Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.
Полное внутреннее отражение.
При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление – полное внутреннее отражение. Давайте разберёмся, что это такое.
Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света
, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. ).
Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч
) и частично отражается назад в воду (луч
). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.
Угол падения луча больше. Этот луч также разделяется на два луча – преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч
будет тусклее, чем луч
(то есть получит меньшую долю энергии), а отражённый луч
– соответственно ярче, чем луч
(он получит большую долю энергии).
По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая – преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!
Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления
. В данной ситуации преломлённый луч
должен был бы пойти параллельно поверхности воды, да идти уже нечему – вся энергия падающего луча
целиком досталась отражённому лучу
.
При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.
Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение – все такие лучи целиком отражаются назад в воду. Угол
называется предельным углом полного отражения.
Величину легко найти из закона преломления. Имеем:
Но , поэтому
Так, для воды предельный угол полного отражения равен:
Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности – вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.
Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.
Разберем задачи ЕГЭ по теме: Преломление света.
Задача 1. Нижняя грань AC прозрачного клина посеребрена и представляет собой плоское зеркало. Угол при вершине клина . Луч света падает из воздуха на клин перпендикулярно грани AB, преломляется и выходит в воздух через ту же грань AB, но уэе под углом преломления
Определите показатель преломления материала клина. Сделайте рисунок, поясняющий ход луча в клине.
Дано:
n-?
Решение. Решение задач по геометрической оптике необходимо начинать с построения чертежа (рисунка), моделирующего условия, описанные в тексте задачи.
Световой луч падает на прозрачный клин перпендикулярно стороне АВ (см.рис.1). В этом случае, световой луч не преломляется на границе раздела воздух-клин, так как угол падения равен 0, соответственно, угол преломления также равен 0. Следовательно, внутри клина световой луч попадает на нижнюю грань АС, которая представляет собой плоское зеркало. Согласно рис.1 величина угла
Тогда угол падения луча на плоское зеркало будет равен
То есть угол падения равен .
Согласно закону отражения света, угол падения светового луча равен углу отражения. В треугольнике МКО угол КОМ образован суммой двух углов α, поэтому он равен 60°. Тогда угол падения светового луча на грань АВ также будет равен (равенство накрест лежащих углов).
На следующем этапе задачи надо применить закон преломления света, так как луч переходит из одной среды в другую.
При записи этой формулы учтено, что второй средой является воздух с показателем преломления равным 1, а первой средой является материал клина с показателем преломления n, который необходимо определить. Из последней формулы можно выразить и рассчитать n.
Задача 2. На тонкую собирающую линзу от удалённого источника падает пучок параллельных лучей (см. рисунок). Как изменится положение изображения источника, создаваемого линзой, если между линзой и её фокусом поставить
плоскопараллельную стеклянную пластинку с показателем преломления n (на рисунке положение пластинки отмечено пунктиром)? Ответ поясните, указав, какие физические закономерности Вы использовали. Сделайте рисунок, поясняющий ход лучей до и после установки плоскопараллельной стеклянной пластинки.
Решение. Рассмотрим ход световых лучей от удаленного источника через линзу при отсутствии плоскопараллельной стеклянной пластинки (см.рис.1).
Луч 1-1ʹ проходит через оптический центр линзы и не преломляется. Луч 2-2ʹ идет через фокус и после прохождения через линзу, идет параллельно главной оптической оси. Пересечение этих двух лучей дает действительное изображение удаленного источника, которое расположено в фокальной плоскости линзы. Этот факт также можно доказать, используя формулу тонкой линзы.
Так как источник света расположен на расстоянии то
Тогда формула тонкой линзы (1) примет вид следовательно, f=F, т.е. изображение формируется в фокальной плоскости линзы.
Рассмотрим ход световых лучей через плоскопараллельную стеклянную пластинку. Для этого необходимо использовать закон преломления света.
Согласно рис.2 угол падения луча на пластину равен α. Закон преломления света на границе раздела воздух-пластинка имеет вид:
Здесь учтено, что показатель преломления воздуха равен 1, а пластинки n.
При переходе светового луча из пластинки в воздух, закон преломления света будет иметь вид:
В этом случае первой средой является пластинка с показателем преломления n, а второй средой будет воздух с показателем преломления равным 1.
Из (1) и (2) выразим и
.
Так как правые части этих уравнений равны, то
Отсюда вытекает равенство углов . Следовательно, луч, падающий на стеклянную пластину, выходит из нее, оставаясь параллельным входящему лучу. Но при этом выходящий луч немного смещается вверх.
Исходя из этого можно сделать вывод, что изображение удаленного источника после прохождения через плоскопараллельную стеклянную пластину, не изменится. Из удаленного источника выходит бесконечное количество параллельных лучей, которые собираются в фокальной плоскости линзы.
Ответ: не изменится.
Задача 3. Ученик провел опыт по преломлению света, представленный на фотографии. Как изменится при уменьшении угла падения угол преломления светового пучка и скорость света, распространяющегося в стекле? Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшиться
3) не изменится
Запишите в таблицу выбранные цифры для каждой величины. Цифры в ответе могут повторяться.
Решение. Для ответа на первый вопрос задачи необходимо применить закон преломления света для границы раздела воздух-стекло.
Показатель преломления стекла равен n, а воздуха 1.
При уменьшении угла падения α, будет уменьшаться и значение Так как показатель преломления стекла не изменяется, то значение
так же будет уменьшаться. Поэтому угол преломления уменьшится.
Для ответа на второй вопрос надо учесть, что скорость света в данной среде определяется значением показателя преломления где с – скорость света в вакууме, а n – показатель преломления среды (стекла). Так как эти обе величины не изменяются, то скорость света в стекле так же не изменяется.
Задача 4. Чему равен синус предельного угла полного внутреннего отражения при переходе света из вещества с в вещество с
?
Явление полного внутреннего отражения наблюдается при переходе светового луча из оптически более плотной среды в оптически менее плотную (см.рис.1). Источник света S должен находиться в среде с большим показателем преломления.
Для нахождения синуса угла полного внутреннего отражения необходимо воспользоваться законом преломления света.
При полном внутреннем отражении преломленный луч скользит по границе раздела двух сред и угол преломления . С учетом того, что
уравнение (1) примет вид:
Если вам нравятся наши материалы – записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Преломление света.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
07.06.2023