Выделяемая при прохождении электрического тока энергия увеличивается при увеличении силы тока
На рисунке изображена зависимость силы тока через лампу накаливания от приложенного к ней напряжения. Выберите два верных утверждения, которые можно сделать, анализируя этот график.
1) Сопротивление лампы уменьшается при увеличении силы тока, текущего через нее.
2) Мощность, выделяемая в лампе при напряжении 110 В, равна 50 Вт.
3) Мощность, выделяемая в лампе при напряжении 170 В, равна 76,5 Вт.
4) Сопротивление лампы при силе тока в ней 0,35 А равно 200 Ом.
5) Мощность, выделяемая в лампе, увеличивается при увеличении силы тока.
1) При увеличении силы тока сопротивление лампы
2) При напряжении 110 В сила тока равна 0,35 А. Мощность, выделяемая в лампе, равна
4) При сила тока 0,35 А напряжении равно 110 В. Сопротивление лампы равно 110 В : 0,35 А ≈ 315 Ом.
5) При увеличении силы тока мощность, выделяемая в лампе,
Верными являются третье и пятое утверждения.
Закон Джоуля-Ленца
Тепловое действие тока опытным путём независимо друг от друга изучали английский учёный Джоуль и русский учёный Ленц. Они пришли к выводу, который впоследствии назвали закон Джоуля – Ленца: количество теплоты, выделяющееся при прохождении тока в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:
где – количество теплоты, I – сила тока, R – сопротивление проводника, t – время прохождения тока.
Закон Джоуля – Ленца был получен экспериментально, но так как мы знаем формулу для работы электрического тока (), то сможем вывести его с помощью несложных математических вычислений. Если на участке цепи, в котором течёт электрический ток, не выполняется механическая работа и не происходят химические реакции, то результатом работы электрического тока будет нагревание проводника. В результате этого нагревания проводник будет отдавать тепло окружающим телам. Следовательно, в данном случае, согласно закону сохранения энергии, количество выделенной теплоты () будет равно работе тока (A). Зная формулу для работы тока и напряжения, получим следующие преобразования:
Если сила тока неизвестна, а известно напряжение на концах участка цепи, то, воспользовавшись законом Ома, получаем:
Формулы и можно использовать только тогда, когда вся работа электрического тока расходуется только на нагревание. Если на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, эти формулы использовать нельзя (в таких случаях применяются сложные математические расчёты).
Металлокерамические материалы и изделия
Металлокерамические
материалы
– это материалы, получаемые прессованием
из металлических порошков с последующим
спеканием их при высоких температурах.
Основное
сырьё порошки металлов: вольфрам, титан,
кобальт, марганец, хром, железо, медь,
олово, алюминий и др. Неосновное сырьё
порошок неметалла: графит.
Проводниковые материалы
Проводниковые материалы, применяемые в электротехнике, можно разделить на две группы. К первой группе относятся материалы с высокой удельной проводимостью, ко второй — материалы со сравнительно высоким удельным сопротивлением.
Материалы первой группы должны иметь: большую удельную проводимость, малый температурный коэффициент сопротивления, достаточную механическую прочность и устойчивость в отношении коррозии.
В зависимости от назначения материала к одним из перечисленных свойств предъявляются повышенные требования, к другим, наоборот, пониженные. Так, например, для обмоток электрических машин механическая прочность может быть допущена более низкой, чем для контактных проводов, работающих на разрыв и истирание. Чистые металлы обладают наибольшей проводимостью, так как любые примеси снижают проводимость.
Медь. Медь получила наиболее широкое распространение как проводниковый материал вследствие небольшого удельного сопротивления (ρ = 0,0175 ом•мм 2 /м), достаточной механической прочности, хорошей обрабатываемости и достаточной стойкости к коррозии.
Прокаткой или волочением из меди можно получить проволоку, шины, полосы, например клиновидного сечения для коллекторных пластин и т. д.
Обычно применяется электролитическая медь, содержащая примесей не более 0,1 %. Различают твердую, неотожженную медь марки МТ и мягкую, отожженную медь марки ММ. Твердая медь применяется, например, для контактных проводов (электрическая тяга), коллекторных пластин (электрические машины) и т. д. Мягкая медь широко применяется для обмоточных проводов, из которых изготовляются обмотки электрических машин, и различных электромагнитных аппаратов и приборов.
Кроме чистой меди, применяются ее сплавы с другими металлами — бронзы, латунь.
Все бронзы имеют повышенную механическую прочность и повышенное удельное сопротивление. Кадмиевая бронза (Cd — 0,9%) применяется для коллекторных пластин и троллейных проводов. Бериллиевая бронза (Вl—2,2%) применяется для токоведущих пружин, скользящих контактов, щеткодержателей. Латунь (Zn — 30%) широко применяется для изготовления деталей в электроаппарато- и приборостроении. Алюминий наряду с медью получил широчайшее применение, несмотря на то, что обладает худшими электрическими (ρ = 0,0295 ом• мм 2 /м) и механическими свойствами. Чистый алюминий — мягкий, обладает малой механической прочностью. По твердости различают мягкий алюминий отожженный марки AM и твердый неотожженный марки AT. При применении алюминиевых проводов, взамен медных, при одинаковом сопротивлении и одинаковой длине алюминиевые провода будут иметь сечение на 60% больше медных, а вес будет составлять 48% медных. Для проводов линий электропередач применяются алюминиевые сплавы, например алдрей, содержащий 1—1,5% (примесей Mg, Si, Fe), обладающий достаточной механической прочностью и хорошей проводимостью (ρ = 0,032 ом• мм г 1м).
Применяются также сталеалюминиевые провода, у которых поверх внутренних стальных проволок расположен наружные алюминиевые сталь (железо) обладает значительным удельным сопротивлением (р =0,13 ом•мм 2 1м) и малой стойкостью по отношению к коррозии. Поэтому сталь применяется для проводов воздушных линий только при передаче малой мощности, так как в этом случае сечение проводов определяется не электрическим сопротивлением, а их механической прочностью. Для защиты от коррозии применяется цинковое покрытие (оцинкованные провода).
Ко второй группе проводниковых материалов относятся материалы с высоким удельным сопротивлением. Это преимущественно сплавы: никель—хром—железо (нихром);железо—хром—алюминий (фехраль) и др. Они применяются для изготовления обмоток нагревательных приборов, аппаратов, реостатов. Они выдерживают высокие температуры нагрева (порядка 1 000° С). Высокое удельное сопротивление их обеспечивает возможность получения коротких и компактных обмоток.
Манганин — сплав меди 86%, марганца 12% и никеля 2%. Он обладает высоким удельным сопротивлением и малым температурным коэффициентом (порядка 1•10 5 Мград), вследствие чего применяется для изготовления шунтов, добавочных сопротивлений и образцовых катушек сопротивлений.
Припой и флюсы. Припой это сплав для пайки, которая применяется для получения электрического соединения с малым сопротивлением.
Припой должен иметь температуру плавления значительно более низкую, чем металл соединяемых деталей (проводов), для того чтобы при нагревании он плавился, а металл соединяемых деталей оставался твердым. Припой покрывает поверхность соединяемых деталей и заполняет зазоры между ними. Припой диффундирует в металл деталей, в результате промежуточный слой и соединяемые детали после остывания образуют одно целое.
Применяются мягкие оловянно-свинцовые припои, содержащие олова от 18 до 90%, и твердые медно-цинковые с содержанием меди от 36 до 55%. Для пайки алюминиевых проводов применяют цинко-оловянистый припой, содержащий цинка 56%, олова 42% и меди 2%, или цинко-алюминиевый, содержащий цинка 80%, алюминия 12% и меди 8%.
Для получения прочного и надежного соединения припоя с материалом соединяемых деталей применяют вспомогательные вещества — флюсы. Основное назначение их растворить и удалить окислы и загрязнения с поверхностей спаиваемых участков.
В качестве флюсов применяется преимущественно канифоль. При пайке алюминиевых проводов применяется флюс, состоящий из 100 весовых частей денатурированного спирта и 20 весовых частей канифоли. Электротехнический уголь. Основой электротехнического угля являются разновидности углерода — графит и уголь. Они размельчаются и вместе с добавочными компонентами, например медным порошком, связываются при помощи каменноугольных пеков и смол, формируются и подвергаются термической обработке. Электротехнический уголь применяется для изготовления щеток к электрическим машинам, угольных электродов для печей, сварки, электролитических ванн, непроволочных сопротивлений, деталей электровакуумных приборов, гальванических элементов и т. д. Статья на тему Проводниковые материалы
Проводниковые материалы с большим удельным сопротивлением
–
сравнительно хорошая пластичность
(δ=15-30 %);
–
высокое удельное электрическое
сопротивление (ρ=0,42-0,48
мкОм∙м);
–
очень малый
температурный коэффициент электрического
сопротивления
(α=6-50 ∙ 10-6
0С-1);
–
малая
коррозийная стойкость
(окисляется при 60 0С,
стеклянная изоляция);
–
малая термоЭДС в паре с медью (1-2 мкВ/0С)
(возникающая в замкнутой электрической
цепи, состоящей из последовательно
соединенных разнородных проводников,
контакты
между которыми имеют различную
температуру).
Применение:
проволока, ленты для реостатов и
электроизмерительных приборов высоких
классов точности работающих при
температуре до 300 0С.
–
хорошая пластичность (δ=20-40 %);
–
высокое удельное электрическое
сопротивление (ρ=0,48-0,52
мкОм∙м);
–
минимальный
темп-ный коэффициент электрического
сопротивления
(α=5-25 ∙ 10-6
0С-1);
–
значительная коррозийная стойкость
из-за никеля Ni
(окисляется при 900 0С);
–
в холодном состоянии не воздействуют
низко концентрированные кислоты,
воздействует перегретый пар при 200-500
0С.
–
значительная термоЭДС в паре с медью
(45-55 мкВ/0С).
Применение:
проволока и ленты для реостатов и
нагревательных элементов, работающих
при температуре до 500 0С,
термопары (датчик для измерения
температуры).
–
хорошая пластичность (δ=25-30 %) и жаропрочный
(способность работать под действием
механических напряжением в условиях
повышенных температур без заметной
остаточной деформации и разрушения);
–
высокое удельное электрическое
сопротивление (ρ=1,1-1,2
мкОм∙м);
–
малый температурный
коэффициент электрического сопротивления
(α=100-200 ∙ 10-6
0С-1);
–
высокая жаростойкость (до 1250 0С)
(способность противостоять химическому
разрушению поверхности под действием
внешней среды при высоких температурах);
–
дорогой (содержит никель Ni).
Применение:
проволока и ленты для электронагревательных
элементов работающих при температуре
до 1000 0C.
–
хорошая пластичность (δ=20 %);
–
высокая твёрдость и хрупкость, плохо
поддаётся обработке, жаропрочный;
–
высокое удельное электрическое
сопротивление (ρ=1,2-1,3
мкОм∙м);
–
высокая жаростойкость (до 1350 0С);
–
малая коррозийная стойкость и обладает
магнитными свойствами (в составе имеет
железо).
Применение:
проволока для мощных электронагревательных
устройств и промышленных печей,
пуско-тормозных резисторов электровозов
работающих при температуре до 1400 0C.
По агрегатному состоянию проводниковые материалы делятся на газообразные жидкие и твердые. В ремонте электрооборудования наиболее распространены последние. По сопротивлению, протекающему электрическому току их обычно делят на материалы с малым и высоким удельным сопротивлением.
Опыты, демонстрирующие зависимость количества теплоты от силы тока и сопротивления
Факт нагрева проводника при протекании по нему тока объясняется тем, что во время движения заряженных частиц под действием электрического поля они сталкиваются с частицами проводника, в результате часть энергии передаётся этим частицам проводника, то есть средняя скорость хаотического (теплового) движения частиц проводника увеличивается, и проводник нагревается. По закону сохранения энергии кинетическая энергия свободных заряженных частиц, приобретённая под действием электрического поля, превратится во внутреннюю энергию проводника. Следовательно, можно предположить:
1. чем больше сопротивление проводника, тем больше тепла выделяется при прохождении электрического тока по проводнику, то есть количество теплоты, которое выделяется в проводнике при прохождении по нему электрического тока, прямо пропорционально сопротивлению проводника;
2. количество теплоты, выделяемое в проводнике при прохождении по нему электрического тока, зависит от силы тока (чем больше сила тока, тем большее количество свободных частиц проходит через сечение проводника в единицу времени, происходит больше столкновений, следовательно, больше энергии передаётся частицам проводника). Можно подтвердить данные предположения с помощью опытов.
Соберём электрическую цепь, в которой последовательно с источником тока подключены два нагревателя с разными сопротивлениями, которые опущены в калориметры (прибор для измерения количества теплоты) с одинаковым количеством воды при одинаковой температуре. При прохождении электрического тока через нагреватели будет наблюдаться повышение температуры воды, причём вода будет нагреваться быстрее в том калориметре, в который помещён нагреватель с бльшим сопротивлением (см. Рис. 1). То есть подтверждается предположение 1.
Для подтверждения предположения 2 соберём электрическую цепь, в которой последовательно к источнику тока подключен амперметр, лампочка накаливания и реостат. Регулируя сопротивление реостата, меняем силу тока в цепи при постоянном напряжении. При увеличении силы тока увеличивается яркость лампочки (см. Рис. 2), то есть увеличивается количество теплоты, которое выделяет нить накаливания.
Рис. 1. Нагреватель с бльшим сопротивлением нагревает воду быстрее
Рис. 2. Увеличение яркости лампочки при увеличении силы тока
Задача из ЕГЭ
По проводнику сопротивлением R течёт ток I. Как изменится количество теплоты, выделяющееся в проводнике в единицу времени, если его сопротивление увеличить в два раза, а силу тока уменьшить в два раза? Варианты ответа: а) увеличится в два раза; б) уменьшится в два раза; в) не изменится; г) уменьшится в восемь раз.
Воспользуемся законом Джоуля – Ленца:
Количество теплоты, выделяющееся в проводнике в единицу времени, равно:
Так как сопротивление увеличивается в два раза, а сила тока уменьшается в два раза:
Следовательно, новое значение количества теплоты будет равно:
Ответ: б) уменьшится в два раза
Лампочка накаливания
Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.
Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.
Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.
Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.
ВПР и приблизительный интервальный просмотр
В предыдущем примере мы «подтягивали» значения из таблицы, используя точный интервальный просмотр. Он подходит для работы с наименованиями. Теперь разберем ситуацию, когда может понадобиться приблизительный интервальный просмотр.
Задача. В магазин привезли товар. Необходимо присвоить каждому товару размер партии, опираясь на его количество.
Товары такие же, как и в первом примере, но задача изменилась: нужно привязать формулу не к наименованию, а к количеству
Решение. Заполняем формулу ВПР в ячейке «Партия», как было показано в предыдущем примере.
Разница в том, что теперь искомое значение – число, а интервальный просмотр – истина, что означает приблизительный поиск. Получается вот такой результат:
Что произошло? Аргумент «интервальный просмотр» имеет значение 1. Это значит, что формула ВПР ищет в таблице ближайшее меньшее искомое значение.
В нашем случае количество товара «Кофе» – 380. ВПР берет это число в виде искомого значения, после чего ищет ближайшее меньшее в соседней таблице – число 300. В конце функция «подтягивает» данные из столбца напротив («Крупная»). Если количество товара «Кофе» = 340 – это «Крупная партия». Важно, чтобы крайний левый столбец таблицы, которая указана в формуле, был отсортирован по возрастанию. В противном случае ВПР не сработает.
Значения и данные во второй таблице отсортированы по убыванию – ВПР не работает
Изделия с малым удельным сопротивлением
Рассмотренные материалы являются основой различных электротехнических изделий: проводов, шин, лент и пр. Особенно важны в ремонте электрического оборудования провода и кабели, поэтому изучим их более подробно. • Обмоточные провода — проволока с особо тонкой изоляцией при повышенной электрической и механической прочности. Выпускаются они круглого и прямоугольного сечения. В ремонтной практике в основном используются обмоточные провода с медной и алюминиевой жилой. Если в марке перед буквой «П» стоит буква «А» (АПБ) — жила провода алюминиевая, если «А» не стоит (ПБ) — жила медная. Кроме того, марка характеризует изоляцию обмоточного провода, которая может быть: волокнистой (ПБД), эмалевой (ПЭВ), комбинированной (ПЭВШО), вместе с тем органической (например, хлопчатобумажной) и неорганической (например, стекловолокнистой). Волокнистые изоляции проводов (ПБД, АПББО. ПШД и др.), как правило, обладают относительно повышенной механической, но относительно малой электрической прочностью, что объясняется наличием воздуха в порах. Обмоточные провода с такой изоляцией по сравнению с эмалевой имеют большую толщину, но они намного дешевле других. Эмалевая изоляция проводов (ПЭЛ, ПЭВ-1, ПЭВТЛ и др.) при малой толщине обладает повышенной электрической прочностью. Провода предназначены для массового использования в обмотках электрических машин и трансформаторов. В зависимости от класс нагревостойкости рекомендуются марки: . класс А и Е-ПЭВ-1, ПЭВ-2, ПЭМ-1, ПЭМ-2, ПЭТВЛ-1 и ПЭТВЛ-2. И ї них марки проводов ПЭВ и ПЭМ по электроизоляционным и физико-механическим характеристикам практически равноценны и не требуют дополнительного слоя волокнистой изоляции. Провода марки ПЭМ более устойчивы к трансформаторному маслу, их можно рекомендовать также для обмоток электромашин холодильных установок; марки проводов класса Е: ПЭТВЛ-1 и ПЭТВЛ-2 целесообразно использовать только для обмоток электродвигателей малой мощности; класс В — ПЭТВ, ПЭ-939, ПЭТВ-ТС, их недостаток — пониженная стойкость к кратковременным тепловым перегрузкам; класс F— ПЭТ-155, ПЭТМ, ПЭФ-155. Из них наибольшее применение в электрических машинах получила марка ПЭТ-155, так как обладает хорошими электроизоляционными свойствами и устойчивостью к тепловым ударам, но механические характеристики ее ниже, чем, например, у марки ПЭТМ. Марка ПЭФ-155 имеет повышенную стойкость к пониженным температурам. Слабая механическая прочность изоляции многих эмалированных проводов (например. ПЭЛ, ПЭВ и др.) потребовала усиления ее за счет наложения поверх эмалевой пленки слоя волокнистой изоляции (ПЭЛ БО, ПЭВШО и др.). В том случае, если нити не удерживаются на эмали, их подклеивают лаком. Комбинированная изоляция проводов (эмали с нитью) сочетает положительные качества проводов эмалированных и с волокнистой изоляцией. Но обычно толщина их больше и они дороже. Массовое применение для изготовления обмоток электрических машин получили провода со стекловолокнистой изоляцией ПСД (АПСД), ПСДК — два слоя стеклянных нитей, пропитанных соответственно глифталевым и кремнийорганическим лаками, классы нагревостойкости первых — F, вторых — Н. Широко распространены также провода с комбинированной изоляцией и с уменьшенной ее толщиной ПСДТ, ПСДКТ и, наконец, провода с лакированной поверхностью ПСД-Л, ПСДК-Л. Силовые и установочные провода с резиновой и пластмассовой изоляцией применяются для распределения электрической энергии в силовых и осветительных сетях. Они используются на открытом воздухе и в закрытых помещениях, могут прокладываться открыто, в трубах и под слоем штукатурки. Предназначены для работы с температурой, °С: жил +65, окружающего воздуха +25, земли +15. При теплостойкой резине на основе бутилкаучука температура работы провода допускается до +85°С, с кремнийорганической — до +180°С. Провода изготавливаются для номинальных напряжений на 380, 660 и 3000 В. Провода с резиновой изоляцией. ПРН, АПРН имеют медные и алюминиевые жилы с резиновой изоляцией и дополнительной негорючей резиновой оболочкой. Они в основном используются при прокладке в сырых и сухих помещениях, а также на открытом воздухе. ПРГИ — провод с медной, гибкой жилой, с резиновой изоляцией, обладающей защитными свойствами. Используется при прокладке, где требуется повышенная эластичность, при монтаже соединений подвижных частей электрических машин в сухих и сырых помещениях. АППР — провод с алюминиевой жилой и резиновой изоляцией, не распространяющей горение, применяется для прокладки в жилых и производственных зданиях, в частности, животноводческих помещениях. Для осветительных сетей в сухих и сырых помещениях используются медные провода марки ПРД в непропитанной оплетке, двухжильные и скрученные. Провода с пластмассовой изоляцией. АПВ — жила алюминиевая с поливинилхлоридной изоляцией, применяется для монтажа силовых и осветительных цепей в машинах и станках, в трубах, несгораемых строительных конструкциях; ПВ1 —то же, но с медной жилой; ПВЕ — то же, но с гибкой медной жилой, используется в основном для гибкого монтажа при скрытой и открытой прокладках. АВТ— провод с алюминиевыми жилами и изоляцией из поливинилхлоридного пластика с несущим тросом для наружной прокладки (например, в жилые дома или хозяйственные постройки в сетях 380 В, в 1-м и II-M районах гололедности. ДВТУ — то же, но с усиленным несущим тросом для III-го и IV-го районов гололедности. Применяются для прокладки в животноводческих помещениях. Провода силовые гибкие (нагревостойкие) используются для выводов электродвигателей. Марки ПВБЛ и РКГМ имеют медные жилы, резиновую изоляцию, но первая из них выполнена на основе бутилкаучука, в оплетке лавсановой нитью, вторая — из кремнийорганической резины, в оплетке из стекловолокна, пропитанной эмалью или термостойким лаком. • Соединительные шнуры служат для подключения питания от электрической сети до различных видов бытовых токоприемников: электрических машин, телевизоров, нагревательных приборов и т.п. Допустимая рабочая температура нагрева: при резиновой изоляции +65°С, при поливинилхлоридном пластике +70°С, номинальное напряжение — до 660 В. По исполнению шнуры разделяют на: плоские без оболочки (ШПП, ПВП-1, ШВП-2), круглые без оболочки (ШВПТ), легкие с оболочкой (ШВВП, ШВЛ), обычные с оболочкой (ШРО, ШРС и др.). • Монтажные провода предназначены для электрических соединений в аппаратах, приборах и других электрических устройствах, а также схемах. Они делятся по нагревостойкости на обычные (MB, МП, МВКЭ) и повышенной стойкости (МКР, МКТП, МПО), причем за основу берется наиболее нагретая точка в проводе. Жилы медные, у многих марок луженые, одно- и многопроволочные, изоляция: резина, поливинилхлоридный пластик, полиэтилен. Повышение механической прочности изоляции выполняется путем дополнительной оплетки (например, капроновой нитью, в марке ставится буква К), делается и экранирование в виде оплетки из медного провода (в марке — Э). Номинальное напряжение 500, 1000 В для обычных проводов и 2, 2,5 и 4 кВ для высоковольтных монтажных проводов типа ПВМП-2. Рабочая температура для обычных — до +70°С, с поливинилхлоридной изоляцией — до +85°С, с повышенной нагревостойкостью — от +85 до +150°С. • Неизолированные провода нашли массовое применение в воздушных линиях электропередач. Они изготавливаются из меди (одной или нескольких скрученных проволок (марка М)), алюминия (несколько скрученных проволок (А, Ап)), алюминиевых сплавов (АН, АЖ). Для повышения механической прочности алюминиевых проводов их укрепляют стальными сердечниками (сталеалюминиевые провода марок АС, АпС). Провода марок А, Ап, АС, АпС, АН, АЖ рекомендуются для использования в сельской, лесной, горной местности, допустимы в атмосфере промышленных районов; марки М — в атмосфере морской местности, а также и в промышленных районах. Кабели служат для передачи энергии в электрических линиях. Они представляют собой изолированные друг от друга токопроводящие жилы с общей изоляцией, могут иметь свинцовую или алюминиевую оболочку и броню из стальных лент или из круглых оцинкованных стальных проволок, поверх которых накладывается защитный покров. Жилы выполняются одно- и многопроволочные из меди или алюминия. Изоляция делается бумажной с пропиткой составами, резиновой, пластмассовой. По применению кабели делятся на силовые (для электроснабжения токоприемников (АВВГ, АСГ, ААГ)), контрольные (для подведения маломощных, низковольтных, управляющих сигналов к техническим устройствам и снятия информации (КРСГ, АКРВГ)), управления, отличающиеся от контрольных только конструкцией для соответствующих условий (КРШУ, КУПР), монтажные, назначение которых то же, что и монтажных проводов (КМПВ, КМПЭВ). По напряжению они подразделяются на низковольтные с номинальным напряжением до 1 кВ и высоковольтные с номинальным напряжением 1,6, 10, 20, 35 и более кВ. • Контакты — самая уязвимая часть электрических сетей, они служат для периодического надежного замыкания и размыкания цепей. В процессах выполнения указанных операций они подвергаются воздействию электрической искры или дуги, что вызывает эрозию поверхностей, подгорание, даже приваривание друг к другу и т.п. Отсюда требования к контактным материалам: высокая электропроводность, тугоплавкость, твердость, хорошая устойчивость к истиранию и воздействию дуги. Для изготовления контактов кроме чистых тугоплавких металлов широко распространены специальные сплавы, в которые входят серебро, кобальт, медь, бериллий, никель, хром, молибден, вольфрам, кадмий. К контактным изделиям относятся щетки. • Припои. Это специальные материалы, расплавляемые в месте соединений деталей или в целях защиты от окисления для их покрытия. По температуре плавления припои делят на мягкие и твердые, отличаются они также по механическим характеристикам. Мягкие припои имеют температуру плавления до 400°С. Применяются там, где от соединений требуется в основном лишь хороший электрический контакт, поскольку механические качества таких соединений относительно невысоки. Кроме того, мягкие припои широко используют при лужении для защиты основного материала от окисления или для получения хорошего контакта при холодном соединении токоведущих частей (например, в местах соединений сборных шин). В качестве мягких припоев используют олово, его сплавы со свинцом — ПОС-18 и др. (цифра показывает содержание олова в припое — 18 %). Чем больше олова, тем выше температура плавления и жидкотекучесть. Есть мягкие припои с добавками алюминия, серебра. Особой легкоплавкостью (с пониженной температурой плавления) отличаются припои, в которые входят кадмий и висмут. Твердые припои имеют температуру плавления более 500°С. Применяются там, где от соединения требуется не только хороший контакт, но и высокие механические характеристики. В качестве твердых припоев чаще всего используются сплавы: медно-фосфорные (ПМФ), медно-цинковые (ПЦ), серебряные (ПСр). Последний из них дает наилучший электрический контакт, но он и самый дорогой. Флюсы — материалы с повышенной способностью к растворению окислов металлов и других загрязнений. Кроме того, у них пониженная температура плавления (значительно ниже припоя) и плотность, что позволяет им быстро всплывать на поверхность расплава и образовывать на нем надежную защиту (пленку) от окисления. Эти материалы также способны уменьшать поверхностное натяжение расплавленного припоя. Такие материалы используются при пайке, сварке и лужении. Только под их слоем возможно получение высококачественных соединений с хорошими электрическими и механическими характеристиками. В электротехнике в качестве флюсов для мягких припоев массово применяют канифоль и смеси на ее основе, для твердых — буру. Флюсы на основе соляной и фосфорной кислот можно использовать только там, где они не могут вызвать ускоренного разрушения изоляции или окисления металлов.
Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца
Рассмотрим Закон Джоуля-Ленца и его применение.
При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:
Q = I 2 Rt , где
Q — количество выделяемой теплоты (в Джоулях) I — сила тока (в Амперах) R — сопротивление проводника (в Омах) t — время прохождения (в секундах)
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.
В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.
Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R
Где применяется закон Джоуля-Ленца ?
1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.
2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.
3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.
Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.
Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение». Выберите дальнейшие действия:
Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ
Задание 19. Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1) Выделяемая при прохождении электрического тока энергия увеличивается при увеличении силы тока.
2) Для прижимных пластин (электродов) нельзя использовать материалы с большим удельным электрическим сопротивлением.
3) Контактную сварку проводят при очень большом электрическом напряжении.
4) Метод контактной сварки был изобретён в начале XX века.
5) Первоначальный метод сварки с помощью клещей с угольными электродами давал сварку по всей поверхности сложенных друг на друга пластин.
Для осуществления процессов контактной точечной сварки первоначально использовались специальные клещи с угольными электродами, к которым подводился электрический ток. Затем две сложенные одна на другую стальные пластины зажимались клещами, а ток, подведённый к угольным электродам, проходя через металл, давал достаточное количество теплоты для образования сварной точки.
В 1886 году Э. Томсон запатентовал принципиально новый способ электрической сварки, описываемый следующим образом: «Свариваемые предметы приводятся в соприкосновение местами, которые должны быть сварены, и через них пропускается ток громадной силы – до 200 000 А при низком напряжении — 1-2 В. Место соприкосновения представит току наибольшее сопротивление и потому сильно нагреется. Если в этот момент начать сжимать свариваемые части и проковывать место сварки, то после охлаждения предметы окажутся хорошо сваренными».
Схема такой сварки изображена на рисунке. Практически всё сопротивление- цепи сосредоточено в месте контакта свариваемых деталей (материал деталей имеет большое удельное сопротивление, и, дополнительно, касание происходит в отдельных точках поверхности).
В конце XIX века стыковая контактная сварка применялась для соединения телеграфных проводов. В своих дальнейших исследованиях Э. Томсон стал комбинировать нагрев электрическим током с пластическими деформациями, возможными благодаря применению гидравлических систем сжатия. К началу XX века относятся сообщения о применении контактной сварки для изготовления самолётных двигателей.
Онлайн курсы ЕГЭ и ОГЭ
Для наших пользователей доступны следующие материалы:
Применение закона Джоуля-Ленца в жизни
Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.
Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.
Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку
§ 16. Жаростойкие проводниковые сплавы
Для нагревательных элементов, применяемых в электронагревательных приборах и печах сопротивления, необходимы проволока и ленты, могущие длительно работать при температурах от 800 до 1200°С. Описанные ранее чистые металлы (медь, алюминий и др.), а также сплавы (манганин и константан) непригодны для этого, так как интенсивно окисляются, начиная с температуры 300— 500° С. Образующиеся на них защитные пленки окислов легко испаряются и не защищают металл от дальнейшего окисления. Для электронагревательных приборов нужны жаростойкие проводниковые сплавы высокого сопротивления, т. е. стойкие к окислению при высоких температурах. Кроме того, эти сплавы должны обладать большим удельным сопротивлением и малой величиной температурного коэффициента сопротивления а. Перечисленным требованиям удовлетворяют сплавы двух типов: двойные сплавы на основе никеля (Ni) и хрома (Сг), называемые нихромами, и тройные сплавы на основе никеля, хрома и железа, называемые ферронихромами. Кроме того, находят применение тройные сплавы железа, хрома и алюминия, называемые фехралями и хромалями. Эти сплавы отличаются различным содержанием составляющих их компонентов и соответственно разной жаростойкостью и электрическими характеристиками.
Таблица 5 Состав и основные свойства жаростойких проводниковых сплавов*
Лекция 5. Материалы высокого удельного сопротивления
При изготовлении реостатов и нагревательных элементов используют сплавы с высоким удельным сопротивлением. Материалами высокого сопротивления (резистивными) называют проводниковые материалы, у которых значения ρ в нормальных условиях составляют не менее 3×10 -7 Ом·м. По области применения резистивные материалы разделяют на три основные группы:
1) материалы для резисторов (медные, медно-никелевые, никелевые, никель-хромовые; пленочные, проволочные, углеродистые);
2) материалы для электродов термопар и удлиняющих проводов (сплавы на основе Ni, Pt систем, Cu-Ni, Pt-Rh, W-Re; неметаллические порошковые материалы);
3) материалы для нагревателей (сплавы на основе систем Ni-Cr, Fe-Cr-Al, порошковые керамические материалы).
В зависимости от области применения к резистивным материалам предъявляют дополнительные требования, например, по температурному коэффициенту электрического сопротивления α ρ, жаростойкости и др.
При использовании сплавов в электроизмерительной технике от них требуется не только высокое удельное сопротивление, но и возможно меньшее значение α ρ а также малая термо-э.д.с. относительно меди. Проводниковые материалы в электронагревательных приборах должны длительно работать на воздухе при температурах порядка 1000°С.
5.1 Материалы для резисторов (резистивные материалы общего назначения).
Основные требования к материалам для резисторов: низкий температурный коэффициент электрического сопротивления, низкая термоэлектродвижущая сила в паре с медью, высокая стабильность электрического сопротивления во времени. Различают сплавы для проволочных, ленточных резисторов (технических и прецизионных) и материалы для непроволочных резисторов (пленочные, углеродистые). Резистивные материалы общего назначения широко используют в приборостроении, электротехнике для изготовления технических резисторов (регулирующие и пусковые реостаты, нагрузочные элементы), для прецизионных резисторов (образцовые сопротивления, различные элементы электроизмерительных приборов, катушки сопротивления, шунты, обмотки потенциометров).
Сплавы для проволочных резисторов. Для технических резисторов основными являются сплавы на основе системы Cu-Ni (сплав МН16, мельхиор МН19, нейзильбер МНЦ 15-20); для прецизионных резисторов ‒ сплавы на медной основе (манганин МНМц 3-12, МНМцАЖ 3-12-0,3-0,3, константан МНМц 40-1,5) и сплавы на никелевой основе (Х20Н80-ВИ, 80ХЮД-ВИ, Х15Н60, ЭП277-ВИ). Для изготовления высокоточных прецизионных сопротивлений используют резистивные сплавы на основе благородных металлов (Au, Ag, Pt, Pd).
Манганин – основной сплав на медной основе для электроизмерительных приборов и образцовых резисторов. Манганин отличается желтоватым оттенком, хорошо вытягивается в тонкую проволоку до диаметра 0,02 мм. Из манганина изготавливают также ленту толщиной 0,01 – 1 мм и шириной 10 – 300 мм. Для получения малого α ρ и высокой стабильности сопротивления во времени манганин подвергают специальной термической обработке – отжигу при 350 – 550°С в вакууме с последующим медленным охлаждением и дополнительной длительной выдержкой при комнатной температуре.
Константан – сплав меди и никеля с небольшим содержанием марганца. Содержание никеля в сплаве примерно соответствует максимуму ρ и минимуму α ρ для сплавов Cu-Ni. Константан хорошо поддается обработке; его можно протягивать в проволоку и прокатывать в ленту тех же размеров, что и из манганина. Значение α ρ константана близко к нулю и обычно имеет отрицательный знак.
Константан применяют для изготовления реостатов и электронагревательных элементов в тех случаях, когда рабочая температура не превышает 400-450°С. При нагреве до достаточно высокой температуры на поверхности константана образуется пленка окисла, которая обладает электроизоляционными свойствами (оксидная изоляция). Покрытую такой изоляцией константановую проволоку можно наматывать плотно, виток к витку, без особой изоляции между витками, если только напряжение между соседними витками не превышает 1 В. Таким образом, например, изготавливают реостаты. Для окисления константановой проволоки, дающей достаточно гибкую и прочную плёнку окисла, требуется быстрый (не более 3с) нагрев проволоки до температуры 900°С с последующим охлаждением на воздухе.
Константан в паре с медью или железом приобретает большую термо-э.д.с. Это является недостатком при использовании константановых резисторов в измерительных схемах; за счет разности температур в местах контакта константановых проводников с медными возникают термо-э.д.с., которые могут явиться источником ошибок, особенно при нулевых измерениях в мостовых и потенциометрических схемах. Константан с успехом применяют для изготовления термопар, которые служат для измерения температуры, если последняя не превышает нескольких сотен градусов.
Непроволочные резистивные материалы подразделяют на пленочные металлические и пленочные на основе оксидов, силицидов, карбидов, а также неметаллические ‒ углеродистые. Непроволочные резисторы широко применяют в автоматике, измерительной и вычислительной технике, в различных областях электротехники.
Резистивные металлические плёнки. Металлические пленки применяют для изготовления тонкопленочных резисторов и обкладок тонкопленочных конденсаторов, а также для создания токопроводящих дорожек и контактных площадок в интегральных микросхемах.
Тонкопленочные резисторы (ТПР) представляют собой тонкую пленку резистивного материала на поверхности диэлектрической подложки. ТПР относительно нечувствительны к шероховатости поверхности до тех пор, пока она не превышает толщины пленки. Материалами для подложек, используемых для этой цели, являются: стекла, полированный плавленый кварц, керамика и монокристаллические пластины.
Тонкопленочные резисторы могут быть изготовлены путем напыления жидкого металла через трафарет, электрическим осаждением, испарением в вакууме и некоторыми другими способами. Для этих целей применяются различные металлы и их сплавы. Материалы тонкопленочных резисторов можно условно разделить на несколько групп: резистивные материалы на основе чистых металлов, резистивные материалы на основе металлических сплавов, резистивные материалы на основе микрокомпозиций, керметы, полупроводниковые материалы и пр. ТПР обычно выполняют из нихрома (80 % Ni и 20 % Сг), тантала или соединения моноокиси кремния с хромом.
Тонкие пленки из нихрома Х20Н80, получаемые методом термического испарения и конденсации в вакууме, широко применяются для изготовления тонкопленочных резисторов, в частности, резисторов интегральных микросхем. Химический состав пленок может заметно отличаться от состава исходного испаряемого сплава, что обусловлено значительными различиями в давлениях паров никеля и хрома при температурах испарения. Поэтому состав конденсата зависит от многих технологических факторов: скорости осаждения, температуры и материала подложки, давления остаточных паров в камере и др.
Обычно применяют тонкие нихромовые пленки с поверхностным сопротивлением R S = 50–300 Ом и α ρ, изменяющимся в пределах от –3×10 -4 до +2×10 -4 К -1 . Такие пленки обладают достаточно хорошей адгезией к диэлектрическим подложкам и высокой стабильностью свойств.
В последнее время все шире применяют рениевые тонкопленочные резисторы. Основным преимуществом рения перед другими материалами, используемыми для изготовления тонкопленочных резисторов, являются: устойчивость при высоких температурах, что позволяет изготовлять резисторы с высокой мощностью рассеяния при высокой температуре; высокая стабильность пленок; невысокий температурный коэффициент сопротивления; незначительное изменение сопротивления от толщины, что облегчает изготовление высокоомных резисторов с малым разбросом сопротивления. В том случае, когда необходимо получить высокостабильные пленки с большим поверхностным сопротивлением (порядка нескольких тысяч Ом) и низким температурным коэффициентом сопротивления, применяют тантал, вольфрам и рений.
Пленки из оксидов, силицидов и карбидов. Для изготовления тонкопленочных резисторов широко используются металлосилицидные сплавы и дисилициды металлов. Многокомпонентные резистинные сплавы МЛТ для тонкопленочных резисторов, содержащие Si, Fe, Cr, Ni, Al, W, устойчивы к окислению и воздействию химически активных сред. С целью расширения диапазона сопротивлений по сравнению с получаемыми из металлов и сплавов используют керметы.
КЕРМЕ́ТЫ (сокр. от «керамикометаллические материалы») ‒ металлокерамические материалы, представляющие собой гетерогенную композицию одной или нескольких керамических фаз с металлами или сплавами, с относительно малой взаимной растворимостью фаз. Керметы сочетают свойства керамики (высокие твердость и сопротивление износу, тугоплавкость, жаропрочность и др.) и металлов (теплопроводность, пластичность), т.е. обладают комплексом свойств, интегрирующим характеристики нескольких компонентов.
Свойства керметов зависят от свойств наполнителя и матрицы, а также объемного соотношения и адгезии между ними. Неметаллические фазы в керметах придают им требуемые эксплуатационные характеристики. Содержание керамической фазы в керметах колеблется от 15 до 85% (по объему). Металлическая матрица в керметах объединяет твердые частицы в единый композиционный материал, обеспечивая изделиям необходимую прочность и пластичность. В качестве металлических компонентов используют — Cr, Ni, Al, Fe, Со, Ti, Zr и сплавы на их основе.
По природе керамической составляющей керметы делят на:
‒ карбидные (SiC, Cr 3C 2, TiC)
‒ керметы на основе силицидов (MoSi) и других тугоплавких соединений и др.
По применению ‒ жаропрочные, износостойкие, высокоогнеупорные, коррозионно-стойкие и др.
Микроструктура керметов может представлять собой:
‒ керамическую матрицу, внутри которой расположены металлические включения;
‒ металлическую матрицу с изолированными между собой керамическими частицами;
‒ два равноправных каркаса из металла и керамики;
‒ статистическую смесь керамических и металлических частиц.
Области применения керметов очень широки и разнообразны. В электро- и радиотехнике для изготовления тонкопленочных резисторов используются керметные пленки. Существенным преимуществом керметных пленок является возможность варьирования их удельным сопротивлением в широких пределах. Тонкие пленки на основе микрокомпозиции Cr-SiO 2 изготавливают методом термического испарения и конденсации в вакууме с последующей термообработкой для стабилизации свойств.
В толстопленочных микросхемах используют резисторы, полученные на основе композиции стекла с палладием и серебром. Для этой цели стекло размалывают в порошок, смешивают с порошком серебра и палладия, вспомогательной органической связкой и растворителем. Получаемую пасту наносят на керамическую подложку и спекают в обычной атмосфере. Удельное сопротивление пленок зависит от процентного содержания проводящих компонентов и режима спекания.
Углеродные резистивные материалы. Вторым по значению резистивным материалом является графит. Графит – одна из кристаллических модификаций углерода. Это непрозрачный, мягкий, электропроводный материал. Структура у него слоеная. В слое атомы углерода соединены в бесконечные шестичленные кольца. Каждое единичное кольцо представляет собой аналог бензольного кольца. Удельное сопротивление зависит от направления измерения. Если приложить напряжение поперек слоев, удельное сопротивление составит 100 мкОм×м, если приложить напряжение в плоскости слоев, удельное сопротивление достигает 0,3‒0,5 мкОм×м.
Графит сочетает высокие жаропрочность и кислотостойкость, электропроводность и теплопроводность. максимальная рабочая температура графита различных марок в инертной среде и вакууме составляет от 1000 до 2500 о С.
Рис. 24.5. Схема кристаллической решетки графита: а, с – параметры решетки
Помимо чистого углерода известно много модификаций технического углерода. Их физические характеристики также сильно меняются в зависимости от структуры и от количества разнообразных примесей. В основе их лежит структура графита, поэтому технические углероды можно считать и техническими графитами. Из них отметим сажу, кокс, коллоидный графит, силицированный графит. Сажа характеризуется очень малым размером частиц, до десятков ангстрем. Используется как наполнитель для резин, полимеров, электропроводных композиций. Взвесь порошка графита в воде называется «аквадаг» и используется для создания электропроводящих покрытий.
Тот факт, что графит имеет повышенное удельное сопротивление по сравнению с металлами, позволяет применять его в промышленности для создания различных сопротивлений. Начиная с пленочных сопротивлений в радиоэлектронике, графитовой бумаги и графитовой ткани и заканчивая композиционными материалами, где частицы графита выступают в роли проводящего наполнителя.
Материалы высокого сопротивления
Для различных электронагревательных и электроизмерительных приборов, реостатов (пусковых, нагрузочных и пр.), где требуется высокое сопротивление, употребляются специальные сплавы. В зависимости от применения к ним предъявляются специфические требования. Например, от материалов, используемых в измерительных приборах, требуется: высокое удельное электрическое сопротивление (от этого зависят размер и масса приборов), малый температурный коэффициент удельного сопротивления (для обеспечения стабильности электрического сопротивления прибора), достаточная стабильность удельного сопротивления во времени, малая удельная термо-ЭДС в паре с медью (иначе растет ошибка измерений), хорошая обрабатываемость. К этим материалам относится, например, сплав на основе меди с марганцем — манганин, марок МНМцЗ-12 и МНМцАЖЗ-12-0,3. Их удельное сопротивление в отрезке температур от -100 до+100°С меняется крайне мало. Массовое применение в электротехнике получил также сплав медно-никелевый — константан, марки МНМц40-1,5, его удельное сопротивление практически не зависит от температуры. Для контактных пружин, реостатов и т.п. широко используют другой медно-никелевый сплав — нейзильбер. Иные требования предъявляются к материалам для электронагревательных приборов. Они длительно работают при температурах около 1000°С в воздушной среде. Поэтому от них, кроме высокого сопротивления, требуется также повышенная жаростойкость (т.е. способность работать, не разрушаясь при высоких температурах в воздухе или других газообразных средах). В настоящее время для этих целей широко применяют хромоникелевые и хромоалюминиевые сплавы. Первые из них отличаются большей жаропрочностью, но они дорогие, вторые — намного дешевле, но более тверды и хрупки.
Сколько кубов воды берет пожарный вертолет?
У нас есть 16 ответов на вопрос Сколько кубов воды берет пожарный вертолет? Скорее всего, этого будет достаточно, чтобы вы получили ответ на ваш вопрос.
Отвечает Николай Белый
Продолжительность полета – до 6 час. Эвакуационно-десантное оборудование состоит из спасательной электролебедки с поворотной стрелой, грузоподъемностью 300 кг и десантного спускового устройства “СУР”. Забор и сброс 3200 л воды в режиме висения – 1,5 мин.
Автозаполнение
В конце протягиваем формулу вниз до конца, в результате чего происходит автозаполнение.
Чтобы функция ВПР правильно сработала во время автозаполнения, искомое значение должно быть относительной ссылкой, а таблица – абсолютной.
Суть теплового закона
Упомянутые выше ученые (Джоуль Ленц) практически одновременно (1841-1842 гг.) установили зависимость нагрева от силы тока. Для наглядного эксперимента можно использовать следующий комплект:
Аналогичный опыт можно воспроизвести в емкости с раствором соли, который обладает определенной проводимостью
По закону Ома ток (I) можно определить через напряжение (U) и электрическое сопротивление (R):
Выполняемую работу (A) записать следующим образом:
A = I * U * t = I * (I*R) * t = (U/R) * U * t = I2*R*t = (U2/R) * t.
Здесь t обозначает соответствующий интервал времени.
На этом этапе следует вспомнить первый закон термодинамики, который определяет сохранение энергии в замкнутой системе. Этот постулат позволяет описывать рассматриваемое явление с помощью созданной формулы. Подразумевается равенство количества тепла (Q) выполненной работе (A). Итоговое выражение (закон Ленца):
Q = I2*R*t = (U2/R) * t = I * U * t.
Суть явления объясняется столкновением заряженных частиц с молекулами проводника. Если образец – твердый материал, речь идет об электронах и компонентах кристаллической решетки, соответственно.
Плагиат или нет?
Ещё в 1832-1833-х годах Эмилий Христианович Ленц обратил внимание на то, что проводимость проводника сильно зависит от его нагревания, это осложняло расчёты электрических цепей, так как не представлялось возможным вычислить зависимость тока от теплоты, которую он выделяет.
Рис. 3. Опыт Ленца
Ленц сконструировал специальный прибор-сосуд, служивший для измерения количества тепла, выделявшегося в проволоке. В сосуд учёный заливал разбавленный спирт (спирт обладает меньшей электропроводностью, чем вода, которую использовал в своих опытах Джеймс Джоуль). В раствор спирта помещалась платиновая проволока, через которую пропускался электрический ток (см. Рис. 3). Была произведена большая серия опытов, в которых Ленц замерял время, затраченное на нагревание раствора на . Получив достаточное количество убедительных данных, в 1843 году учёный опубликовал закон: «нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Однако аналогичный закон уже был опубликован Джоулем в 1841 году, но Ленц вполне обоснованно обратил внимание на то, что англичанин провёл свои эксперименты с большим количеством погрешностей. Именно поэтому закон о тепловом действии тока был назван в честь двух выдающихся учёных.