Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 января 2022 года; проверки требуют 17 правок.
Схематичное изображение истинного (H’H), теоретического видимого (C1C2C3C4) и фактического видимого (B1B2B3B4) горизонтов.
У этого термина существуют и другие значения, см. Луна (значения).
Луна появилась около 4,5 млрд лет назад, немного позже Земли. Наиболее популярна гипотеза о том, что Луна сформировалась из осколков, оставшихся после «Гигантского столкновения» Земли и Тейи — планеты, схожей по размерам с Марсом.
На сегодняшний день Луна является единственным внеземным астрономическим объектом, на котором побывал человек.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июня 2022 года; проверки требуют 3 правки.
Иллюзия Луны («лунная иллюзия») — оптическая иллюзия, которая заключается в том, что Луна низко над горизонтом кажется в несколько раз больше, чем когда она находится высоко в небе (около зенита). На самом деле угловой размер Луны практически не зависит от её высоты над горизонтом. Иллюзия возникает и при наблюдениях Солнца и созвездий. Свидетельства о феномене сохранились с древних времён и зафиксированы в различных источниках человеческой культуры (например, в летописях). В настоящее время существует несколько различных теорий, объясняющих эту иллюзию.
Закат Луны за скалы Сиона
Солнечный столб в Истре, Московская область
Солнечный столб может возникать и ниже солнца (фотография сделана в Антарктике). Солнечная дорожка на воде продолжает солнечный столб, что объясняется сходством оптической схемы обоих явлений: дорожка на воде также вызвана отражениями от поверхностей, близких к горизонтали, но не идеально горизонтальных
Ширина столба определяется средним углом отклонения отражающих граней кристаллов от горизонтали, а также размерами источника; в идеальном случае точечного источника и абсолютно горизонтальных кристаллов ширина столба стремится к нулю. Световые столбы от Солнца и Луны имеют ширину не менее 0,5 градуса (угловой диаметр этих светил).
В редких случаях солнечный столб может сопровождаться так называемым паргелическим кругом. Он представляет собой светлую полосу, которая видна на небе на той же высоте, что и солнце. При благоприятных условиях она составляет замкнутый круг, проходящий через солнце и ложные солнца.
Световые столбы нередко формируются вокруг луны, городских огней и других ярких источников света. Столбы, исходящие от низко расположенных источников света, обычно намного длиннее, чем солнечные или лунные столбы. Чем ближе к световому столбу находится наблюдатель, тем меньше сказывается расположение кристаллов в пространстве на внешнем виде столба.
Сходные оптические явления возникают при ледяных иглах — атмосферном явлении, твёрдых осадках в виде мельчайших ледяных кристаллов, парящих в приземном слое воздуха в морозную погоду. В отличие от световых столбов (оптического эффекта, возникающего в верхней тропосфере), ледяные иглы относятся к атмосферным явлениям и отмечаются метеорологическими станциями.
Наблюдаемое в атмосфере оптическое явление в виде световых кругов вокруг солнца и луны, ложных солнц, столбов, крестов носит название .
Чаще всего гало появляется в виде кругов диаметром сферического угла при глазе наблюдателя равным ≈44°.Внутренняя сторона кольца, обращенная к солнцу или луне, наиболее ярка и окрашена в красноватый цвет.
К внешней стороне круга окраска переходит в желтоватую, зеленоватую и сине-фиолетовую. Часто бывает виден не полный круг, а лишь его части, особенно верхняя Иногда появляются светлые дуги, которые касаются верхней или нижней части круга.
Редко наблюдается бесцветный круг, подходящий через диск солнца или луны параллельно горизонту. В точках пересечения горизонтального круга с гало часто видны светлые пятна, называемые ложными солнцами. Они настолько блестящие и яркие, что производят впечатление второго солнца.
тогда, когда между наблюдателем и солнцем или луной имеются тонкие облака верхнего яруса (перисто-слоистые, перистые, перисто-кучевые) или когда ледяные кристаллы, имеющие правильную форму, главным образом в виде шестигранной призмы, взвешены в воздухе как отдельные элементы. Нередко гало наблюдается в виде вертикального столба. Чаще всего этот столб виден, когда солнце или луна расположены вблизи горизонта, выше или ниже его.
Образование таких столбов объясняется отражением лучей от горизонтальных граней плавающих в воздухе ледяных кристаллов. При сильных морозах по обе стороны солнца иногда видны два световых столба, представляющих собой части дуги гало когда весь круг не виден Иногда столбы около солнца пересекаются с горизонтальным кругом. При этом пересечении могут образовываться световые кресты. Разнообразие явления гало объясняется многочисленными формами ледяных кристаллов и различием расположения их в пространстве.
Эти обстоятельства создают разные условия преломления лучей света, проходящих через кристаллик льда. Появление полного светового радужного круга диаметром сферического угла при глазе наблюдателя равным ≈ 44°, около солнца или луны, возникающего при наличии тонкой пелены перисто-слоистых облаков , иногда едва заметной для глаза,-признак приближения циклона, теплого фронта или фронта окклюзии теплого типа; надо ожидать наступления ветреной погоды в ближайшие 12 – 20 ч. При этом яркость сияния светового круга постепенно усиливается и начинает ослабевать лишь при очень сильном уплотнении перистых облаков.
Белые световые круги (без радужной окраски) вокруг светил, столбы и ложные солнца указывают на сохранение тихой, ясной антициклональной погоды, зимой – на сильные морозы, которые продержатся 12 ч и более. Световые круги около солнца или луны, появляющиеся о виде неполного кольца, наблюдаются в неустойчивых воздушных массах, в периферийных районах антициклонов, в тыловой части циклона; при этом возможна переменная погода с проходящими ливневыми осадками и сильными ветрами.
Белые световые круги большого диаметра, видимые под углом 92°, около солнца или луны, появляющиеся зимой,-признак того, что здесь находятся центральные районы мощного антициклона или отрога высокого давления; можно ожидать устойчивую погоду со слабыми ветрами, штилями и с сильными морозами.
Почему Солнце и Луна у горизонта кажутся такими большими? Почему они бывают сплюснутыми на закате и восходе?
Нам кажется, что Солнце или Луна на закате (или на восходе) выглядят больше, когда они высоко в небе. Именно кажется, я не случайно выделил это слово. Все происходит у нас в мозгу, на сетчатке глаза их диаметр в любом случае остается одинаковым. Есть несколько объяснений этого эффекта и, кстати, к единому мнению, почему так происходит, ученые еще не пришли.
А то, что происходит в мозгу, иллюстрирует этот рисунок
Наш мозг считая, что это изображение обладает глубиной, принимает все объекты за размещенные в пространстве. Верхний отрезок воспринимается как расположенный дальше, чем нижний. А при условии, что оба отрезка оставляют равный след на сетчатке глаза, но один из них дальше, мозг посылает сознанию сигнал, что верхний отрезок больше.
Тот же эффект мы видим и на этом рисунке
А теперь вернемся к Солнцу и Луне.Интуитивно наш мозг видит небо в виде приплюснутого купола, полагая, что объекты, расположенные ближе к горизонту находятся значительно дальше, чем объекты, которые находятся над головой. Облака в небе — хороший пример этого эффекта. Облака у горизонта, находятся дальше и кажутся меньше, чем облака, которые находятся над наблюдателем. И мозг считает, что Луна у горизонта, по аналогии с облаками, должна быть меньше. А так как в действительности ее размер не меняется, то мозг сам увеличивает ее. И нам кажется, что Луна больше. Кроме того, мозг сравнивает Луну с предметами, находящимися у горизонта, например, с уменьшившимися в размерах деревьями. С Солнцем наш мозг поступает так же.
То, что увеличение размера Луны это только иллюзия, подтверждают и нехитрые опыты.Сделайте бумажную трубку и посмотрите через нее на низко стоящую Луну. Неожиданно обнаружится, что Луна уменьшилась до обычных размеров, потому что мы не видим теперь других предметов у горизонта и их перспективного уменьшения. Уберите трубку, и Луна снова становится большой!
Еще можно сделать две фотографии Луны: когда она находятся высоко в небе и когда у горизонта. Размер диска на фотографиях будет одинаковым (естественно, что фото нужно делать при одинаковом фокусном расстоянии объектива).Изменение размера — это всего лишь иллюзия, оптический обман, порождаемый «обработкой» изображения нашим мозгом!
Иногда на восходе или на закате можно наблюдать приплюснутость, а порою и совсем странные искажения солнечного или лунного диска. Чаще всего такие искажения наблюдаются у Солнца на закате в тихие безоблачные дни. Всему виной рефракция — преломление лучей в атмосфере Земли.
Луч света, идущий, например, от звезды (точка 1), искривляется в атмосфере и мы видим звезду выше её истинного положения, в точке 2.
Это значит, что благодаря рефракции мы видим звезду, уже зашедшую за горизонт. Чем выше над горизонтом находится звезда, тем меньшую толщу атмосферы приходится преодолевать лучу, и тем меньшие возникают преломления.
С Солнцем немного сложнее. По аналогии с приведенной выше картинкой, при заходе Солнца, когда оно уже опустилось за горизонт, мы продолжаем его видеть — рефракция приподнимает диск. А на восходе Солнце еще находится под горизонтом, а мы, благодаря рефракции, его уже видим. Т.е. день для нас наступает раньше, а заканчивается позже. Но Солнце, в отличие от звезды, имеет видимые размеры. И лучи, идущие от его нижнего края, преломляются сильнее, чем те, которые идут от верхнего. Это происходит потому, что нижним лучам приходится преодолевать большую толщу атмосферы Земли. И, соответственно, преломляются они по разному, нижний край приподнимается немного сильнее верхнего — диск оказывается сплюснутым.
уна — ближайшее к Земле небесное тело, её единственный естественный спутник. Находясь на расстоянии около 380 тыс. км от Земли, Луна обращается вокруг неё в том же направлении, в котором Земля вращается вокруг своей оси. За каждые сутки она перемещается относительно звёзд примерно на 13, совершая полный оборот за 27,3 суток. Этот промежуток времени — период обращения Луны вокруг Земли в системе отсчёта, связанной со звёздами, — называется или (от лат. sidus — звезда) .
Рис. 2.12. Смена лунных фаз
Собственного свечения Луна не имеет, а Солнце освещает только половину лунного шара. Поэтому по мере её движения по орбите вокруг Земли происходит изменение вида Луны — смена лунных фаз. В какое время суток Луна бывает над горизонтом, каким мы видим обращённое к Земле полушарие Луны — полностью освещённым или освещённым частично, — всё это зависит от положения Луны на орбите (рис. 2.12).
Если она расположена так, что обращена к Земле своей тёмной, неосвещённой стороной (положение ), то мы не можем видеть Луну, но знаем, что она находится на небе где-то рядом с Солнцем. Эта фаза Луны называется . Двигаясь по орбите вокруг Земли, Луна примерно через трое суток придёт в положение . В это время её можно будет видеть по вечерам неподалёку от заходящего Солнца в виде узкого серпа. При наблюдении из Северного полушария Земли выпуклость серпа обращена вправо, в сторону зашедшего Солнца (рис. 2.13). При этом нередко бывает видна и остальная часть Луны, которая светится значительно слабее, так называемым пепельным светом. Это наша планета, отражая солнечные лучи, освещает ночную сторону своего спутника.
Рис. 2.13. Вечерняя видимость Луны
День ото дня серп Луны увеличивается по ширине, и его угловое расстояние от Солнца возрастает. Через неделю после новолуния мы видим половину освещённого полушария Луны — наступает фаза, называемая (см. рис. 2.12, положение ).
В дальнейшем доля освещённого полушария Луны, видимая с Земли, продолжает увеличиваться до тех пор, пока не наступит (положение ). В этой фазе Луна находится на небе в стороне, противоположной Солнцу, и видна над горизонтом всю ночь — от его захода до восхода. После полнолуния фаза Луны начинает уменьшаться. Сокращается и её угловое расстояние от Солнца. Сначала на правом крае лунного диска появляется небольшой ущерб, который имеет форму серпа. Постепенно этот ущерб растёт (положение ), а через неделю после полнолуния наступает фаза (положение ). В этой фазе, как и в первой четверти, мы снова видим половину освещённого полушария Луны, но теперь уже другую, которая в первой четверти была неосвещённой. Луна восходит поздно и видна в этой фазе по утрам (рис. 2.14). В последующем её серп, обращённый теперь выпуклостью влево (если смотреть из Северного полушария Земли), становится всё более и более узким (см. рис. 2.12, положение ), постепенно сближаясь с Солнцем. В конце концов он скрывается в лучах восходящего Солнца — снова наступает новолуние.
Рис. 2.14. Утренняя видимость Луны
Полный цикл смены лунных фаз составляет 29,5 суток. Этот промежуток времени между двумя последовательными одинаковыми фазами называется (от греч. synodos — соединение). Ещё в глубокой древности у многих народов месяц, наряду с сутками и годом, стал одной из основных календарных единиц.
Рис. 2.15. Соотношение сидерического и синодического месяцев
Понять, почему синодический месяц длиннее сидерического, нетрудно, если вспомнить, что Земля движется вокруг Солнца. На рисунке 2.15 взаимное расположение Земли и Луны соответствует новолунию. Через 27,3 суток Луна займёт на небе прежнее положение относительно звёзд и будет находиться в точке . За это время Земля, перемещаясь на 1 в сутки, пройдёт по орбите дугу в 27 и окажется в точке . Луне, для того чтобы снова оказаться в новолунии , придётся пройти по орбите такую же дугу (27). На это потребуется немногим более двух суток, поскольку за сутки Луна смещается на 13.
С Земли видна лишь одна сторона Луны, однако это не означает, что она не вращается вокруг своей оси. Проведём опыт с глобусом Луны, перемещая его вокруг глобуса Земли так, чтобы к нему всегда была обращена одна сторона лунного глобуса. Этого можно достичь лишь в том случае, если мы будем его поворачивать по отношению ко всем другим предметам, находящимся в классе. Полный оборот глобуса Луны вокруг оси завершится одновременно с тем, как завершится один оборот вокруг глобуса Земли. Это доказывает, что период вращения Луны вокруг своей оси равен сидерическому периоду её обращения вокруг Земли — 27,3 суток.
В каких пределах изменяется угловое расстояние Луны от Солнца? Как по фазе Луны определить её примерное угловое расстояние от Солнца? На какую примерно величину меняется прямое восхождение Луны за неделю? Какие наблюдения необходимо провести, чтобы заметить движение Луны вокруг Земли? Какие наблюдения доказывают, что на Луне происходит смена дня и ночи? Почему пепельный свет Луны слабее, чем свечение остальной части Луны, видимой вскоре после новолуния?
Нарисуйте вид Луны между первой четвертью и полнолунием. В какое время суток она видна в такой фазе? Луна видна вечером как серп, который обращён выпуклостью вправо и расположен невысоко над горизонтом. В какой стороне горизонта находится Луна? Утром перед восходом Солнца виден серп Луны. Увеличится или уменьшится его ширина на следующие сутки? Сегодня была видна полная Луна. В какое время суток она будет видна через неделю? Нарисуйте, как она будет выглядеть в это время. Сколько времени для наблюдателя, находящегося на Луне, проходит от одной кульминации звезды до следующей?
– это преломление светового луча в атмосфере, обусловленное неодинаковым распределением плотности воздуха.
Известно, что плотность атмосферы уменьшается с высотой. Поэтому световые лучи, идущие к земле от солнца и других небесных светил, переходя в нижние слои атмосферы, отклоняются от первоначального направления в сторону более плотных слоев воздуха.
В результате траектория движения луча принимает форму кривой линии, обращенной выпуклостью вверх от земной поверхности. Глаз человека видит предмет по тому направлению, по которому луч входит в глаз.
Поэтому при нормальной рефракции источник света представляется наблюдателю лежащим выше своего действительного положения. Угол рефракции зависит от высоты светила: чем высота меньше, тем рефракция больше.
Около самого горизонта. она достигает 0°.5 Поэтому солнце и другие светила видны на своих местах только тогда, когда они находятся в зените, во всех других случаях они кажутся несколько приподнятыми.
можно наблюдать светило над горизонтом, когда оно на самом деле скрылось за него. Вот почему в умеренных широтах фактическая продолжительность дня увеличивается на 8-13 мин, а в высоких широтах полярная ночь сокращается почти на две недели против теоретической.
Рефракция оказывает влияние на форму дисков солнца и луны у горизонта. При нахождении солнца или луны низко над горизонтом разность углов рефракции для нижнего и верхнего краев светила получается настолько большой, что нижний их край оказывается относительно более приподнятым, чем верхний. Поэтому диски солнца или луны иногда кажутся немного сплюснутыми.
Рефракция и называется астрономической, если источником светового луча являются небесные светила ( солнце, луна, звезды), или земной, если луч света идет от земных предметов. Вследствие земной рефракции, например, линия берега с моря кажется выше, чем на самом деле. Из-за земной рефракции истинная дальность бывает на 6 – 7% больше теоретической, благодаря чему предметы, в действительности уже скрытые за горизонтом, оказываются еще видимыми. Тонкий слой легкого тумана на горизонте при восходе или заходе солнца и луны, особенно при ясной, теплой и тихой погоде, вызывает вследствие больших изменений плотности в самых нижних слоях атмосферы причудливые искажения контуров диска солнца или луны. Это явление называется деформацией солнца и луны у горизонта. При этом иногда наблюдается появление второго солнца на некотором расстоянии от первого.
– явление анормальной рефракции: помимо самого предмета в его истинном положении наблюдатель видит его мнимое изображение. Отдаленные предметы при этом кажутся видоизмененными – увеличенными или уменьшенными, перевернутыми или искаженными – в зависимости от отклонения, получаемого лучом света. Мираж часто наблюдается в степях жарких стран, пустынях, на океанах и морях, особенно в высоких широтах.
При плавании в этих широтах нередко можно видеть несколько изображений одного и того же судна, причем некоторые из них обращены мачтами вниз. Иногда же очертания берегов и других предметов так сильно искажаются, что даже при хорошем знании местности бывает трудно ее опознать.
В Антарктике, у самой линии горизонта океана, можно видеть айсберги, сильно вытянутые в высоту, причем иногда такие ледяные горы кажутся повисшими в воздухе в перевернутом виде.
Миражи возникают при ясной погоде и высоком атмосферное давлении, когда в нижних слоях воздуха плотность изменяется с высотой нс плавно, а скачкообразно.
В этом случае лучи света, идущие к наблюдателю от различных предметов, испытывают полное внутреннее отражение на границе слоев воздуха с различными плотностями. Иначе говоря, причина возникновения миража – необычная, повышенная рефракция света, образующаяся при резком изменении плотности воздуха по вертикали в нижнем слое атмосферы.
Последняя в основном зависит от быстроты изменения температуры воздуха в вертикальном положении. Например, если теплый воздух распространяется над холодной водой и особенно над ледяным или снежным покровом, то у самой подстилающей поверхности образуется относительно сильно охлажденный воздух, в этом случае с высотой температура будет заметно увеличиваться, а плотность резко уменьшаться.
Световой луч от отдельных предметов идет по выпуклой кривой, в результате чего сами предметы кажутся наблюдателю приподнятыми. Известны случаи, когда с побережья Крыма был виден берег Турции, находящийся на расстоянии 400 км. Такое явление называется
Наоборот при распространении холодного воздуха над сравнительно теплым морем или над пустыней нижние слои воздуха прогреваются больше, чем верхние В этом случае траектория светового луча имеет выпуклость вниз, в результате чего отдаленные предметы кажутся наблюдателю в перевернутом виде Это явление называется .
Как было сказано выше мираж обусловливается либо сильным охлаждением либо сильным нагреванием земной поверхности и предметов, То и другое может происходить как местное явление при тихой ясной погоде. Кратковременные миражи довольно часто наблюдаются в прибрежной зоне морей и океанов и указывают на устойчивую антициклональную погоду.
Нижний отчетливо видимый мираж возникающий после тихой жаркой погоды при сильном нагреве приземного слоя воздуха обусловливает неустойчивое состояние атмосферы которое может в любое время привести к ненастной ветреной погоде. Признаками наступления миража и чрезвычайно сильной рефракции на море может служить кажущееся дрожание горизонта, а также наличие мглы на горизонте.
Деформация формы диска солнца луны и других светил у горизонта при восходе или заходе предвещает тихую, ясную погоду без осадков. Устойчивый верхний мираж – признак наступления ненастной циклональной погоды. Длительный нижний мираж указывает на ненастную погоду. Кратковременный мираж на берегу моря – признак устойчивой антициклональной погоды.
Количественное сопоставление различных теорий по данным экспериментов
Изобретение телескопов позволило различить более мелкие детали рельефа Луны. Одну из первых лунных карт составил Джованни Риччиоли в 1651 году, он же дал названия крупным тёмным областям, именовав их «морями», чем мы и пользуемся до сих пор. Данные топонимы отражали давнее представление, будто погода на Луне схожа с земной, и тёмные участки якобы были заполнены лунной водой, а светлые участки считались сушей. Однако в 1753 году хорватский астроном Руджер Бошкович доказал, что Луна не имеет атмосферы. Дело в том, что при покрытии звёзд Луной те исчезают мгновенно. Но если бы у Луны была атмосфера, то звёзды бы гасли постепенно. Это свидетельствовало о том, что у спутника нет атмосферы. А в таком случае жидкой воды на поверхности Луны быть не может, так как она мгновенно бы испарилась.
С лёгкой руки того же Джованни Риччиоли кратерам стали давать имена известных учёных: от Платона, Аристотеля и Архимеда до Вернадского, Циолковского и Павлова.
Исследования при помощи космических аппаратов
С началом космической эры количество наших знаний о Луне значительно увеличилось. Стал известен состав лунного грунта, учёные получили его образцы, составлена карта обратной стороны.
Впервые Луны достигла советская межпланетная станция «Луна-2» 13 сентября 1959 года.
Впервые удалось заглянуть на обратную сторону Луны в 1959 году, когда советская станция «Луна-3» пролетела над ней и сфотографировала невидимую с Земли часть её поверхности.
Американская программа пилотируемого полёта на Луну называлась «Аполлон». Первая посадка произошла 20 июля 1969 года; последняя — в декабре 1972 года, первым человеком, ступившим 21 июля 1969 года на поверхность Луны, стал американец Нил Армстронг, вторым — Эдвин Олдрин; третий член экипажа Майкл Коллинз оставался в орбитальном модуле.
В декабре 1972 года астронавты «Аполлона-17» капитан Джин Сернан и д-р Харрисон Шмитт стали последними (на сегодняшний день) людьми, высадившимися на Луну.
После того как в августе 1976 года советская станция «Луна-24» доставила на Землю образцы лунного грунта, следующий аппарат — японский спутник «Hiten» — полетел к Луне лишь в 1990 году. Далее были запущены два американских космических аппарата — Clementine в 1994 году и Lunar Prospector в 1998 году.
Место посадки экспедиции «Аполлон-17». Видны: спускаемый модуль, исследовательское оборудование ALSEP, следы колёс автомобиля и пешие следы космонавтов. Снимок КА LRO, 2011 года
В настоящее время к изучению Луны приступают частные компании. Был объявлен всемирный конкурс Google Lunar X PRIZE по созданию небольшого лунохода, в котором участвовали 16 команд из 11 стран, в том числе российская Селеноход. Стартовав в 2010 году, он должен был продлиться до 2017 года, и несмотря на то, что был продлён до 2018, закончился без победителя: ни одного аппарата в рамках конкурса на Луну послано так и не было.
Есть планы по организации космического туризма с полётами вокруг Луны на российских кораблях — сначала на модернизированных «Союзах», а затем на разрабатываемых перспективных универсальных кораблях серии «Федерация».
Луна как небесное тело
Луна перед закатом солнца
С древних времён люди пытались описать и объяснить движение Луны. Со временем появлялись всё более точные теории.
Основой современных расчётов является теория Брауна. Созданная на рубеже XIX—XX веков, она описывала движение Луны с точностью измерительных приборов того времени. При этом в расчёте использовалось более 1400 членов (коэффициентов и аргументов при тригонометрических функциях).
Условия на поверхности
Сила тяжести у поверхности Луны составляет 16,5 % от земной (в 6 раз слабее).
где — приливный потенциал, — центробежный потенциал, — потенциал притяжения. Потенциал притяжения обычно раскладывают по зональным, секторальным и тессеральным гармоникам:
где — присоединённый полином Лежандра, — гравитационная постоянная, — масса Луны, λ и θ — долгота и широта.
Приливы и отливы на Земле
Гравитационное влияние Луны вызывает на Земле некоторые интересные эффекты. Наиболее известный из них — морские приливы и отливы. На противоположных сторонах Земли образуются (в первом приближении) две выпуклости — со стороны, обращённой к Луне, и с противоположной ей. В мировом океане этот эффект выражен намного сильнее, чем в твёрдой коре (выпуклость воды больше). Амплитуда приливов (разность уровней прилива и отлива) на открытых пространствах океана невелика и составляет 30—40 см. Однако вблизи берегов вследствие набега на твёрдое дно приливная волна увеличивает высоту точно так же, как обычные ветровые волны прибоя. Учитывая направление обращения Луны вокруг Земли, можно составить картину следования приливной волны по океану. Сильным приливам больше подвержены восточные побережья материков. Максимальная амплитуда приливной волны на Земле наблюдается в заливе Фанди в Канаде и составляет .
Считается, что источником магнитного поля планет является тектоническая активность. Например, у Земли поле создаётся движением расплавленного металла в ядре, у Марса — последствиями прошлой активности.
Связь фаз Луны с её положением относительно Солнца и Земли, при наблюдении из Северного полушария Земли. Зелёным цветом выделен угол, на который Луна повернётся с момента окончания сидерического месяца до момента окончания синодического месяца
Так как Луна не светится сама, а лишь отражает солнечный свет, с Земли видна только освещённая Солнцем часть лунной поверхности (в фазах Луны, близких к новолунию, то есть в начале первой четверти и в конце последней четверти, при очень узком серпе можно наблюдать «пепельный свет Луны» — слабое освещение её лучами Солнца, отражёнными от Земли). Луна обращается по орбите вокруг Земли, и тем самым угол между Землёй, Луной и Солнцем изменяется; мы наблюдаем это явление как цикл лунных фаз. Период времени между последовательными новолуниями в среднем составляет 29,5 дней (709 часов) и называется синодический месяц. То, что длительность синодического месяца больше, чем сидерического, объясняется движением Земли вокруг Солнца: когда Луна относительно звёзд совершает полный оборот вокруг Земли, Земля к этому времени проходит уже 1/13 часть своей орбиты, и чтобы Луна снова оказалась между Землёй и Солнцем, ей нужно дополнительно около двух суток.
Явление либрации, открытое Галилео Галилеем в 1635 году, позволяет наблюдать около 59 % лунной поверхности. Дело в том, что вокруг Земли Луна обращается с переменной угловой скоростью вследствие эксцентриситета лунной орбиты (вблизи перигея движется быстрее, вблизи апогея медленнее), в то время как вращение спутника вокруг собственной оси равномерно. Это позволяет увидеть с Земли западный и восточный края обратной стороны Луны (оптическая либрация по долготе). Кроме того, в связи с наклоном оси вращения Луны к плоскости её орбиты с Земли можно увидеть северный и южный края обратной стороны Луны (оптическая либрация по широте).
Существует ещё физическая либрация, обусловленная колебанием спутника вокруг положения равновесия в связи со смещённым центром тяжести, а также в связи с действием приливных сил со стороны Земли. Эта физическая либрация имеет величину 0,02° по долготе с периодом 1 год и 0,04° по широте с периодом 6 лет.
Из-за рефракции в атмосфере Земли при наблюдении Луны низко над горизонтом наблюдается приплюснутость её диска.
Время (1,255 секунды), за которое свет, пущенный с Земли, достигает Луны. Рисунок выполнен в масштабе
Из-за неровностей рельефа на поверхности Луны во время полного солнечного затмения можно наблюдать чётки Бейли. Когда же, наоборот, Луна попадает в тень Земли, можно наблюдать другой оптический эффект: она краснеет, будучи подсвеченной рассеянным в атмосфере Земли светом.
«Суперлунием» называют астрономическое явление, при котором момент прохождения Луной перигея совпадает с её полной фазой. Менее распространён термин «микролуние», когда Луна в полной фазе находится в апогее, то есть в дальней точке своей орбиты вокруг Земли. Для земного наблюдателя угловой размер диска Луны в момент «суперлуния» больше на 14 % и яркость его на 30 % выше, чем в момент «микролуния».
Подтверждением теории столкновения планет по касательной можно указать:
Иллюзия Луны — обман зрения, который заключается в том, что когда Луна находится низко над горизонтом, она кажется намного больше, чем когда она висит высоко в небе. На самом деле, угловой размер Луны практически не меняется с её высотой над горизонтом (а точнее, слабо меняется наоборот: около горизонта он слегка меньше, чем в зените, поскольку в этом случае расстояние от наблюдателя до Луны больше на величину земного радиуса). В настоящее время существует несколько теорий, которые объясняют эту ошибку зрительного восприятия разными причинами.
Кроме кажущихся изменений размера диска Луны в отношении наблюдателя невооружённым глазом с поверхности Земли, при малом угловом расположении Луны над горизонтом, видимый диск Луны кажется жёлтым в тёмное время суток или даже розоватым при рассвете-закате.
Международный правовой статус
Существуют компании, якобы продающие участки на Луне. За определённую плату покупатель получает сертификат о «праве собственности» на некоторую площадь поверхности Луны. Есть мнение, что сейчас сертификаты такого рода не имеют юридической силы из-за нарушения условий Договора о принципах деятельности государств по исследованию и использованию космического пространства 1967 года (запрет на «национальное присвоение» космического пространства, в том числе Луны, согласно статье II Договора). Этот Договор оговаривает лишь деятельность государств, не касаясь деятельности физических лиц, чем и воспользовались в данном случае организации.
Лунный ландшафт своеобразен и уникален. Луна вся покрыта кратерами разного размера — от микроскопических до сотен километров в диаметре. Долгое время учёные не могли получить сведений об обратной стороне Луны. Это стало возможным лишь с появлением космических аппаратов. Сейчас уже созданы очень подробные карты обоих полушарий спутника. Подробные лунные карты составляют для того, чтобы в будущем подготовиться к высадке и колонизации человеком Луны — удачного расположения лунных баз, телескопов, транспорта, поиска полезных ископаемых и т. п.
Луна не раз вдохновляла поэтов и писателей, художников и музыкантов, режиссёров и сценаристов на создание произведений, связанных с этим единственным естественным спутником Земли.
Луна может выступать как символ таинственности, недоступной красоты, любви.
Сравнение с луной использовалось уже в древней литературе: В Песни песней Соломона (1-е тысячелетие до н. э.) написано:
Кто эта, блистающая, как заря, прекрасная, как луна, светлая, как солнце, грозная, как полки со знамёнами?
Первое фантастическое произведение о Луне (в стихах), известное с античности, приписывается легендарному древнегреческому певцу Орфею:
Он (Зевс) смастерил и иную землю, безграничную, кою Селеной зовут бессмертные, а земные человеки — Луной. Много на ней гор, много городов, много жилищ.
Μήσατο δ’ ἄλλην γαῖαν ἀπείριτον, ἥν τε σελήνην Άθάνατοι κλῄζουσιν, ἐπιχθόνιοι δέ τε μήνην, Ἣ πόλλ’ οὔρε ἔχει, πόλλ’ ἄστεα, πολλά μέλαθρα.
Тема путешествия на Луну была популярна в фольклоре и в классической литературе, в качестве способа достичь цели фигурируют и заведомо сказочные (бобовый стебель), и сильная буря, и бумажный монгольфьер. Первый технически обоснованный проект полёта на Луну описал Жюль Верн в романах «С Земли на Луну прямым путём за 97 часов 20 минут» (1865) и «Вокруг Луны» (1870).
Основные детали на лунном диске, видимые невооружённым глазом: Z — «лунный заяц», A — кратер Тихо, B — кратер Коперник, C — кратер Кеплер, 1 — Океан Бурь, 2 — Море Дождей, 3 — Море Спокойствия, 4 — Море Ясности, 5 — Море Облаков, 6 — Море Изобилия, 7 — Море Кризисов, 8 — Море Влажности
Топография Луны, высота поверхности относительно лунного геоида. Видимая с Земли сторона — слева
Поверхность Луны можно разделить на два типа:
Лунные «моря», которые составляют приблизительно 16 % всей поверхности Луны, — это огромные кратеры, возникшие в результате столкновений с небесными телами, которые были позже затоплены жидкой лавой. Бо́льшая часть поверхности покрыта реголитом. Из-за влияния гравитационного момента при формировании Луны её «моря́», под которыми лунными зондами обнаружены более плотные, тяжёлые породы, сконцентрированы на обращённой к Земле стороне спутника.
Большинство кратеров на обращённой к Земле стороне названо по имени знаменитых людей в истории науки, таких как Тихо Браге, Коперник и Птолемей. Детали рельефа на обратной стороне имеют более современные названия типа Аполлон, Гагарин и Королёв. На обратной стороне Луны расположена огромная впадина Бассейн Южный полюс — Эйткен диаметром и глубиной — это самый большой бассейн в Солнечной системе, появившийся в результате столкновения. Море Восточное в западной части видимой стороны (его можно видеть с Земли) является отличным примером многокольцевого кратера.
Также выделяют второстепенные детали лунного рельефа — купола, хребты, борозды — узкие извилистые долиноподобные понижения рельефа.
Ударный кратер — углубление, появившееся на поверхности космического тела в результате падения другого тела меньшего размера
Согласно постулатам вулканической теории, выдвинутой в 1780-х годах немецким астрономом Иоганном Шрётером, лунные кратеры были образованы вследствие мощных извержений на поверхности. Но в 1824 году также немецкий астроном Франц фон Груйтуйзен сформулировал метеоритную теорию, согласно которой при столкновении небесного тела с Луной происходит продавливание поверхности спутника и образование кратера.
До 1920-х годов против метеоритной гипотезы выдвигали тот факт, что кратеры имеют круглую форму, хотя косых ударов по поверхности должно быть больше, чем прямых, а значит при метеоритном происхождении кратеры должны иметь форму эллипса. Однако в 1924 году новозеландский учёный Чарльз Джиффорд впервые дал качественное описание удара о поверхность планеты метеорита, двигающегося с космической скоростью. Получалось, что при таком ударе бо́льшая часть метеорита испаряется вместе с породой на месте удара, и форма кратера не зависит от угла падения. Также в пользу метеоритной гипотезы говорит то, что совпадает зависимость количества лунных кратеров от их диаметра и зависимость количества метеорных тел от их размера. В 1937 году эту теорию привёл к обобщённому научному виду советский студент Кирилл Станюкович, впоследствии ставший доктором наук и профессором. «Взрывная теория» разрабатывалась им самим и группой учёных с 1947 года по 1960 год, а дорабатывалась, в дальнейшем, и другими исследователями.
Полёты к спутнику Земли с 1964 года, совершённые американскими аппаратами «Рейнджер», а также открытие кратеров на других планетах Солнечной системы (Марс, Меркурий, Венера), подвели итог этому вековому спору о происхождении кратеров на Луне. Дело в том, что открытые вулканические кратеры (например, на Венере) сильно отличаются от лунных, схожих с кратерами на Меркурии, которые, в свою очередь, были образованы ударами небесных тел. Поэтому метеоритная теория ныне считается общепринятой.
Лунные моря представляют собой обширные, залитые некогда базальтовой лавой низины. Изначально данные образования считали обычными морями. Впоследствии, когда это было опровергнуто, менять название не стали. Лунные моря занимают около 40 % видимой площади Луны.
Луна — второй по плотности спутник в Солнечной системе после Ио. Однако внутреннее ядро Луны мало́, его радиус около 350 км; это только ~20 % от радиуса Луны, в отличие от ~50 % у большинства других землеподобных тел.
Истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения. Аналогично общему понятию, истинным горизонтом может называться не круг, а окружность, то есть линия пересечения небесной сферы и плоскости, перпендикулярной отвесной линии.
Синонимы: математический горизонт, астрономический горизонт.
Искусственный горизонт — прибор, которым пользуются для определения истинного горизонта.
Широко распространено заблуждение, бытующее как минимум со времён Аристотеля (IV век до н. э.), заключающееся в том, что бо́льший размер Луны у горизонта объясняется увеличением, создаваемым атмосферой Земли. На самом деле астрономическая рефракция у горизонта, наоборот, немного уменьшает наблюдаемый размер Луны по вертикали и не влияет на размер по горизонтали. В результате лунный диск около горизонта виден приплюснутым.
Есть и ещё один фактор, из-за которого угловой размер Луны около горизонта слегка меньше, чем когда она в зените. С перемещением Луны от зенита к горизонту расстояние от неё до наблюдателя возрастает на величину земного радиуса, и её видимый размер уменьшается на 1,7 %.
Самый простой способ продемонстрировать иллюзорность эффекта — это подержать небольшой объект (например, монетку) на вытянутой руке, прикрыв при этом один глаз. Сравнивая размер объекта с большой Луной у горизонта и с маленькой Луной высоко в небе, можно увидеть, что относительный размер не изменяется. Можно также сделать из листа бумаги трубу и смотреть через неё только на Луну, без окружающих объектов — иллюзия исчезнет.
Кратковременные лунные явления — это различные непродолжительные локальные аномалии вида лунной поверхности и окололунного пространства, обусловленные нестационарными процессами на Луне.
Возможные объяснения иллюзии
Угол зрения и воспринимаемый размер.
Размер видимого нами объекта может быть определён либо через его угловой размер (угол, который образуют входящие в глаз лучи от краёв объекта) либо через его физический размер (реальный размер, например в метрах). Эти два понятия различаются с точки зрения человеческого восприятия. Например, угловые размеры двух одинаковых объектов, помещённых на расстоянии 5 и 10 метров от наблюдателя, различаются почти в два раза, однако, нам, как правило, не кажется, что ближний объект в два раза больше. И наоборот, если более удалённый объект имеет тот же угловой размер, что и более близкий, мы будем его воспринимать как в два раза больший (закон Эммерта).
На данный момент не достигнуто согласия по вопросу, из-за чего Луна кажется больше у горизонта — из-за бо́льшего воспринимаемого углового размера или из-за бо́льшего воспринимаемого физического размера, то есть кажется ли она находящейся ближе или увеличившейся в размере.
Существует много различных теорий, объясняющих иллюзию Луны. Ниже перечислены лишь основные из них.
Теория о роли конвергенции глаз
В 1940-х годах Боринг (Boring, 1943; Holway & Boring, 1940; Taylor & Boring, 1942) и в 1990-х Судзуки (Suzuki, 1991,1998) предложили объяснение иллюзии Луны, согласно которому, кажущаяся величина Луны зависит от степени конвергенции глаз наблюдателя. То есть иллюзия Луны — это результат усиления импульсов к конвергенции глаз, возникающих у наблюдателя, когда он поднимает взгляд наверх (чтобы посмотреть на Луну в зените), а глаза сами по себе стремятся дивергировать. Из-за того, что конвергенция глаз является одним из признаков близости объекта, наблюдателю кажется, что объект высоко в небе меньше по размеру.
В одном из экспериментов Холуэй и Боринг (Holway & Boring, 1940) просили испытуемых сравнить воспринимаемую ими величину Луны с одним из световых дисков, спроецированных на расположенный рядом с ними экран. В первой серии эксперимента испытуемые сидели на стуле. Наблюдая за Луной, находящейся близ горизонта (на уровне глаз наблюдателя), они выбирали диск, который значительно превосходил по величине тот, который они выбирали, когда наблюдали за Луной, находящейся в зените (подняв глаза под углом 30°). Во второй серии испытуемые наблюдали за Луной, лёжа на столе. Когда они лежали на спине и смотрели на Луну в зените или когда они были вынуждены закидывать голову назад и поднимать глаза вверх, чтобы из положения на спине увидеть Луну на горизонте, результаты были противоположными. Луна близ горизонта казалась им меньше по величине, чем Луна в зените.
Противники данной гипотезы утверждают, что иллюзия увеличенной Луны быстро затухает при увеличении высоты светила над горизонтом, когда необходимость запрокидывать голову и поднимать глаза вверх ещё не возникает.
Теория кажущейся удалённости
Облака у горизонта находятся дальше от наблюдателя, а те, что над ним — ближе. Из-за этого создаётся впечатление плоского, немного изогнутого неба.
Теория кажущейся удалённости впервые была описана у Клеомеда примерно в 200 г. н. э. Теория предполагает, что Луна у горизонта выглядит больше Луны в небе из-за того, что она кажется дальше. Мозг человека видит небо не как полусферу, чем оно на самом деле является, а как сплюснутый купол. Наблюдая за облаками, птицами и самолётами, человек видит, что они уменьшаются при приближении к горизонту. В отличие от земных объектов, Луна, находясь вблизи горизонта, имеет примерно такой же видимый угловой диаметр, как и в зените, но человеческий мозг пытается компенсировать перспективные искажения и предполагает, что диск Луны должен быть физически больше.
Противники данной теории указывают на наличие иллюзии даже при наблюдении светила через темный светофильтр, когда окружающие его объекты неразличимы.
Теория относительного размера
По теории относительного размера воспринимаемый размер зависит не только от размера на сетчатке, но и от размеров остальных объектов в поле зрения, которые мы наблюдаем одновременно. При наблюдении Луны близко к горизонту мы видим не только Луну, но и другие объекты, на фоне которых спутник Земли кажется больше, чем есть на самом деле. Когда же Луна находится в небе, бескрайние просторы неба заставляют её выглядеть меньше.
Данный эффект был продемонстрирован психологом Германом Эббингаузом. Круг, окружённый маленькими кругами, представляет собой Луну у горизонта и окружающие её маленькие объекты (деревья, столбы и т. п.), а круг, окружённый более крупными объектами, представляет собой Луну в небе. При том, что оба центральных круга имеют одинаковый размер, многим людям кажется, что правый круг на картинке больше. Этот эффект может проверить каждый, вынеся из комнаты во двор какой-нибудь крупный предмет (например, стол). На открытом пространстве он будет выглядеть явно меньше, чем в помещении.
Противники данной теории указывают на то, что пилоты самолётов тоже наблюдают данную иллюзию, хотя в их поле зрения наземных объектов нет.
Теория картографического восприятия
Согласно данной теории лунная иллюзия может возникать из-за того, что человеческий мозг воспринимает небесную сферу не как трёхмерный объект, а как его проекцию на плоскость. Так как астрономические наблюдения чаще всего проводятся в вертикальном положении, то эта плоскость – поверхность цилиндра с основанием, стоящим на линии горизонта (его ось проходит через наблюдателя и зенит). Интуитивно ожидается, что чем выше над горизонтом расположен объект, тем больше должна быть его проекция на поверхность воображаемого цилиндра (как это происходит с Гренландией в проекции Меркатора). Однако в случае с Луной её угловой размер не меняется, поэтому мозг трактует это как уменьшение наблюдаемого размера Луны при удалении от линии горизонта. В качестве подтверждения данной теории можно использовать известный приём для преодоления лунной иллюзии – посмотреть на Луну у горизонта через ноги вниз головой. Ещё один способ проверить теорию картографического восприятия – наблюдать за Луной, лёжа на земле. Но при этом важно, чтобы Луна у горизонта находилась за теменем наблюдателя, иначе при повороте головы небесные тела снова начнут проецироваться на поверхность цилиндра.
Благодаря её размеру и составу Луну иногда относят к планетам земной группы наряду с Меркурием, Венерой, Землёй и Марсом. Изучая геологическое строение Луны, можно многое узнать о строении и развитии Земли.
Измерения скорости спутников «Лунар Орбитер» позволили создать гравитационную карту Луны. С её помощью были обнаружены уникальные лунные объекты, названные масконами (от англ. ) — это массы вещества повышенной плотности.
Луна не имеет магнитного поля, хотя некоторые из горных пород на её поверхности проявляют остаточный магнетизм, что указывает на возможность существования магнитного поля Луны на ранних стадиях развития.
Не имеющая ни атмосферы, ни магнитного поля, поверхность Луны подвержена непосредственному воздействию солнечного ветра. В течение 4 млрд лет ионы водорода из солнечного ветра внедрялись в реголит Луны. Таким образом, образцы реголита, доставленные миссиями «Аполлон», оказались очень ценными для исследования солнечного ветра.
Лунотрясения можно разделить на четыре группы:
Расстояние до видимого горизонта
Схематический рисунок для вычисления расстояния до горизонта:
Формула и рисунок для вычисления геометрической дальности видимости. Щёлкните по изображению, чтобы увеличить его.
На рисунке справа дальность видимости объекта определяют по формуле
где — дальность видимости в километрах, и — высоты точки наблюдения и объекта в метрах.
Если учесть земную рефракцию, то формула примет вид:
То же самое, но — в морских милях:
Диаграмма Струйского: Наблюдатель на высоте 10 м (шкала C) увидит утес высотой 50 м (шкала A) с расстояния примерно 21 морской мили (шкала B).
Горизонт на Луне
Земля над горизонтом Луны
Нужно сказать, что расстояния на Луне очень обманчивы. Благодаря отсутствию воздуха удалённые предметы видятся на Луне более чётко и поэтому всегда кажутся ближе.