Теория по геометрии к ОГЭ. Задание 19.
Признаки параллельности двух прямых
Практические способы построения параллельных прямых
Теорема о накрест лежащих углах
Теорема о соответственных углах
Теорема об односторонних углах
Теорема об углах с соответственно параллельными сторонами
Теорема об углах с соответственно перпендикулярными сторонами
Скорее всего, вы смогли бы отыскать три варианта:
И были бы абсолютно правы! Интересно, что в пункте № 3 скрывается один интересный случай, который мы рассмотрим подробнее сегодня, а именно: прямые могут быть перпендикулярны друг другу.
Что это означает? Рассмотрим определение перпендикулярных прямых.
Рассмотрим произвольную прямую
Докажем, что через точку М можно провести прямую, параллельную прямой
. Для этого проведем через точку Мдве прямые: сначала прямую
перпендикулярно к прямой
, а затем прямую
(Рис.2). А из того, что две прямые
перпендикулярны к третьей прямой
следует, что они параллельны (
Возникает вопрос: можно ли через точку М провести еще одну прямую, параллельную прямой
“повернуть” на какой-то угол вокруг точки М, то она пересечет прямую
То естьнам кажется, что через точку Мнельзяпровести прямую отличную от прямой
. Утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой.
Основные определения
Перпендикулярные прямые — это прямые, которые пересекаются друг с другом под углом 90 градусов. Обозначение перпендикулярных прямых: а ┴ b.
Угол, равный 90 градусам, в математике называют прямым и помечают на чертеже квадратиком.
Еще один интересный факт из мира геометрии: если при пересечении двух прямых один из образовавшихся углов равен 90°, то и все остальные углы — прямые, а их сумма будет равна 360°.
Перпендикулярные отрезки — это отрезки, лежащие на перпендикулярных прямых.
Чтобы называться перпендикулярными, отрезкам не обязательно пересекаться самим. Достаточно, чтобы угол между прямыми, на которых они лежат, был равен 90°.
В качестве задачки со звездочкой давайте вспомним, в каких фигурах могут встречаться перпендикулярные отрезки (стороны)? Наверняка вы сразу назовете квадрат и прямоугольник, но также подходит прямоугольный треугольник и даже прямоугольная трапеция — с ней вы познакомитесь на уроках геометрии в 8-м классе.
Также перпендикулярно к стороне могут располагаться различные элементы внутри фигуры. Попробуйте расположить перпендикулярно друг другу диаметр и радиус окружности, две хорды, биссектрису угла треугольника (кстати, последнее задание получится выполнить только в случае, если проводить биссектрису угла к основанию равнобедренного треугольника).
Как мы видим, прямые очень часто пересекаются под углом 90 градусов. Можно сказать, это своего рода обычное, будничное поведение прямых. Прямые углы окружают нас повсюду: в комнате, на оживленных улицах города, в бассейне и даже в любимой книге.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почтуУзнай, какие профессии будущего тебе подойдутПройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас
Теорема о перпендикулярных прямых и ее доказательство
Теорема о перпендикулярных прямыхЧерез каждую точку прямой можно провести перпендикулярную ей прямую, притом только одну.
«Кто это вообще придумал?», — можете возразить вы. «Почему мы должны этому верить? Вдруг все иначе, а нас обманывают». Если это так, то ваши опасения — показатель пытливости ума!
Что такое теорема? Это утверждение, нуждающееся в доказательстве. Это означает, что его не принимает на веру никто: ни вы, ни учитель, ни самый великий ученый. Есть много способов доказательства теорем, один из которых — метод от противного. Используя его, мы будто соглашаемся с противоположным заявлением и рассуждаем, что из этого последует.
Например, попробуем доказать утверждение «осенью грачи улетают на юг» методом от противного. Предположим, что грачи остаются зимовать в наших городах. Тогда мы должны видеть их осенью и зимой повсеместно, а в небе не должно быть видно признаков масштабного перелета. Так ли это на самом деле? Конечно же, нет.
Теперь с помощью этого метода попробуем доказать теорему о перпендикулярных прямых.
Предположим, что теорема ложна, а значит, через точку, лежащую на прямой, можно провести несколько перпендикулярных прямых.
Что и требовалось доказать: вы — молодцы!
Перпендикулярные прямые
Перпендикулярные прямые — это две пересекающиеся прямые, образующие четыре прямых угла.
По другому можно сказать так: перпендикулярные прямые — это две прямые, которые пересекаются под прямым углом. Эти два утверждения истинны.
Перпендикулярность прямых обозначается символом ⊥ . Например, перпендикулярность прямых, изображенных на рисунке 1 обозначается так: AC ⊥ BD. А читается так: прямая AC перпендикулярна к прямой BD.
Для того, чтобы начертить перпендикулярные прямые используют чертежный угольник и линейку.
Две прямые, перпендикулярные к третьей не пересекаются, но параллельны между собой.
Условие перпендикулярности двух прямых — две прямые пересекаются под прямым углом.
Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Прямая перпендикулярна плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
Какое из следующих утверждений верно все углы ромба равны
2. Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
Следствия из аксиомы параллельных прямых
10. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Если мы предположим, что прямая
не пересекает прямую
, то прямая
будет параллельна прямой
, а по условию через точку М проходит прямая
, значит получим, чточерезточку М будут проходить две прямые
Но это противоречит аксиоме параллельных прямых, значит, наше предположение неверно, и прямая
. Что и требовалось доказать.
20. Если две прямые параллельны третьей прямой, то они параллельны.
Предположим, что прямые
Тогда получим, что через точку М проходят две прямые
, т.к. по условию
. Но это противоречит аксиоме параллельных прямых, следовательно, наше предположение неверно, значит, прямые
Следствие – утверждение, которое выводится непосредственно из аксиом или теорем.
Аксиома параллельных прямых
Рассмотрим прямую a и точку M, не лежащую на этой прямой (Рис.1). Докажем, что через точку M можно провести прямую, параллельную прямой a.
Проведем через точку M прямую c, перпендикулярно прямой a, и прямую b, перпендикулярно прямой c (Рис.2).
Поскольку a и b перпендикулярны прямой с, то они параллельны (статья Перпендикулярные прямые Теорема 1 и статья Параллельные прямые. Признаки параллельности прямых Определение 1). Таким образом через точку M проходит прямая, параллельная прямой a.
Возникает вопрос, существует ли другая прямая, проходящая через точку M параллельно прямой a. Интуитивно ясно, что если немного повернуть прямую b вокруг оси M, то прямые b и a пересекутся. Но доказать это утверждение до сих пор не удалось. основываясь на стальных аксиомах геометрии.
Таким образом имеем это утверждение в виде аксиомы:
Аксиома 1. Через точку, не лежащую на данной прямой проходит только одна прямая, параллельная данной.
Следствие 1. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
Доказательство. Пусть заданы параллельные прямые a и b и пусть прямая c пересекает a в точке M (Рис.3). Докажем, что прямая c пересекает и прямую b.
Предположим обратное, т.е. c не пересекает b. Тогда получается, что через точку M проходят две прямые a и c параллельно прямой b, что невозможно (Аксиома 1). Следовательно прямая с пересекает и прямую b.
Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.
Действительно. Предположим, что прямые a и b параллельны прямой c. Докажем, что прямая a параллельна прямой b. Предположим обратное, т.е. прямые a и b пересекаются в точке M (Рис.4). Тогда получается, что через точку M проходят две прямые, параллельные прямой c. Но это невозможно (Аксиома 1). Значит прямые a и b параллельны.
Перпендикулярные прямые в геометрии с примерами
Определение: Две прямые называются перпендикулярными, если они пересекаются под прямым углом.
При пересечении двух перпендикулярных прямых образуются 4 прямых угла.
Отрезки и лучи называются перпендикулярными, если они лежат на перпендикулярных прямых. На рисунке 87 прямые
Определение. Перпендикуляром к данной прямой называется отрезок, который лежит на прямой, перпендикулярной данной, один из концов которого (основание перпендикуляра) является точкой пересечения этих прямых.
(рис. 88). Отрезок АВ — перпендикуляр к прямой
, точка В — основание перпендикуляра. Точку В также называют проекцией точки А на прямую
Если из точки М, которая не лежит на прямой
, провести перпендикуляр МК к прямой
(рис. 89), то получим перпендикуляр, опущенный из точки М на прямую
. Если из точки Р, лежащей на прямой
, провести перпендикуляр РЕ к прямой
(рис. 90), то получим перпендикуляр, восстановленный (восставленный) к прямой
Теорема. Через точку, лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой, и только одну.
; точка А;
Доказать: через точку А можно провести прямую, перпендикулярную прямой
По аксиоме откладывания углов от луча АВ в данную полуплоскость можно отложить угол CAB, равный 90°, и притом только один. Тогда прямая АС перпендикулярна прямой
. Предположим, что существует другая прямая AD, проходящая через точку А и перпендикулярная прямой
и от луча АВ в данную полуплоскость будут отложены два угла, равные 90°:
А это невозможно по аксиоме откладывания углов. Следовательно, не существует другой прямой, проходящей через точку А и перпендикулярной прямой
Теорема. Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой, и притом только одну.
; точка A,
1) В начале докажем, что через точку А можно провести прямую, перпендикулярную прямой
. Мысленно перегнем лист с чертежом по прямой
(совместим верхнюю полуплоскость с нижней, повернув ее вокруг прямой
) (рис. 92, а). Точка А займет некоторое положение, которое обозначим точкой В. Вернем полуплоскости в прежнее положение и проведем прямую АВ. Так как углы 1 и 2 совпадают при наложении полуплоскостей, то они равны. А поскольку эти углы смежные, то каждый из них равен 90° и
2) Теперь докажем, что АВ — единственная прямая, проходящая через точку А и перпендикулярная прямой
. Пусть прямая AD также перпендикулярна прямой
(рис. 92,6). Совместим полуплоскости еще раз. Угол 3 совпадет с углом 4, значит
— развернутый, и через точки А и В будут проходить две прямые: ранее проведенная прямая и прямая, проходящая через точки A, D и В. А это невозможно по аксиоме прямой. Следовательно, прямая AD не перпендикулярна прямой
. Теорема доказана.
Из двух последних теорем следует, что на плоскости через любую точку можно провести прямую, перпендикулярную данной прямой, и притом только одну.
Теорема (о двух прямых, перпендикулярных третьей). На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
Если предположить, что прямые
пересекаются в некоторой точке М, то окажется, что через точку М проходят две прямые
, перпендикулярные третьей прямой
, а это невозможно. Значит, прямые
лежат в одной плоскости и не пересекаются, то есть параллельны между собой. Теорема доказана.
Теорема, обратная данной
Формулировка теоремы, как правило, состоит из двух частей: того, что дано, и того, что нужно доказать. Первая часть называется условием теоремы, вторая — заключением. Часто теорему формулируют в форме: «Если . (условие теоремы), то . (заключение теоремы)». Например, теорему о свойстве смежных углов можно сформулировать так: «Если углы смежные, то сумма этих двух углов равна 180°». «Углы смежные» — это условие теоремы, «сумма этих двух углов равна 180°» — заключение.
Если поменять условие и заключение теоремы местами, то получим утверждение, обратное данному. Для указанной выше теоремы получаем: «Если сумма двух углов равна 180°, то эти углы смежные». Но это утверждение неверно, поскольку можно привести пример двух углов, например, равных 60° и 120°, сумма которых 180°, но которые не являются смежными. Значит, приведенное утверждение не является теоремой.
Если же верно и обратное утверждение, то оно называется теоремой, обратной данной. Например, известна теорема: «Если сумма цифр числа делится на 3, то и число делится на 3» — и ей обратная: «Если число делится на 3, то и сумма цифр числа делится на 3».
Иногда прямую и обратную теоремы объединяют, употребляя при этом выражение «тогда и только тогда». Объединим вышеуказанные теоремы: «Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3».
Пусть в пространстве прямая
в точке В (рис. 98). Если прямая
перпендикулярна любой прямой плоскости, проходящей через точку В, то она называется прямой, перпендикулярной плоскости. Пишут
Отрезок АВ называется перпендикуляром к плоскости
была перпендикулярна плоскости
, достаточно, чтобы она была перпендикулярна каким-то двум прямым плоскости, проходящим через точку В. Например, прямым
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Какие из данных утверждений верны через точку не лежащую на прямой проходит единственная прямая параллельная данной
1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно, это аксиома планиметрии.
Оставить отзыв (1)
Математика
68. В п. 63 мы научились строить прямой угол. Так как две прямые, составляющие прямые углы, называются перпендикулярными друг другу (п. 60), то построение п. 63 можно выразить словами иначе: мы можем построить прямую, перпендикулярную к данной.
Мы теперь должны эту общую задачу разобрать подробнее и прежде всего разделим ее на две отдельных задачи:
1) Дана прямая и точка на ней, построить чрез данную точку перпендикуляр к данной прямой. (Можно ли и сколько?).
2) Дана прямая и точка вне ее; построить чрез данную точку перпендикуляр к данной прямой. (Можно ил и сколько?).
В скобках указаны те вопросы, которые должны быть выяснены при выполнении построений.
69. 1-я задача . Дана прямая и точка на ней; построить чрез данную точку перпендикуляр к данной прямой.
Здесь остается повторить то построение, какое было дано в п. 63.
Пусть дана прямая AB и точка C на ней (чер. 73), построить чрез C перпендикуляр к AB.
От точки C откладываем по AB в разные стороны два произвольных, но равных отрезка CD = CE и затем, принимая последовательно точки D и E за центры, строим две окружности (или две дуги, достаточные для нахождения одной точки пересечения окружностей) одинаковыми радиусами, большими, чем отрезок CD. Точку пересечения M этих окружностей соединяем с C, тогда MC и есть искомый перпендикуляр, так как MC есть половина диагонали ромба, 3 вершины которого суть D, E и M.
Слово «перпендикуляр» пишут для сокращения знаком ⊥; мы построили
(CM перпендикуляр к AB).
Итак, выполнив это построение, мы можем признать, что чрез всякую точку, данную на прямой, можно построить к ней перпендикуляр (говорят иногда: восставить перпендикуляр к данной прямой). Остается еще вопрос: сколько?
Если луч CM повернуть около точки C в ту или другую сторону, то новые углы, составляемые этим лучом с прямою AB, уже не будут прямыми; поэтому заключаем, что возможно построить чрез точку прямой линии к этой прямой лишь один перпендикуляр .
70. 2-я задача . Дана прямая и точка вне ее; построить чрез данную точку перпендикуляр к данной прямой.
Пусть дана прямая AB и точка C вне ее (чер. 74); требуется чрез C построить перпендикуляр к AB.
Задача сводится к построению такого ромба, чтобы его одна вершина расположилась в точке C и одна его диагональ шла по прямой AB. Для построения такого ромба опишем, принимая C за центр, окружность (или дугу), выбрав ее радиус столь большим, чтобы эта окружность пересекалась с прямою AB; пусть она пересечет прямую AB в точках D и E. Тогда будут найдены еще две вершины ромба. Затем, принимая последовательно за центры точки D и E, построим два круга (или две дуги) тем же самым радиусом и найдем точку их пересечения, расположенную по другую сторону от прямой AB сравнительно с точкою C, пусть эта точка есть F. Тогда все 4 вершины ромба найдены; остается построить его диагональ CF, она, как мы знаем, и будет перпендикулярна к AB, т. е. CF ⊥ AB или CM ⊥ AB.
Стороны ромба DC, CE, EF и FD нет надобности строить.
Выполнив указанное построение, мы должны признать, что из всякой точки, данной вне прямой, мы можем построить перпендикуляр к данной прямой (говорят иногда: опустить перпендикуляр на данную прямую). Остается еще вопрос: сколько?
Для решения этого вопроса допустим, что чрез точку C (чер. 75) построено: 1) CD ⊥ AB и 2) CE ⊥ AB. Тогда ∠CDB или ∠1 и ∠CEB или ∠2 оба должны быть прямыми и, следов., равны между собою. Но ∠CEB есть внешний угол для ∆CDE, а мы знаем (п. 49), что внешний угол треугольника должен быть больше внутреннего с ним несмежного. Это противоречие показывает, что наше допущение не верно, т. е. Нельзя построить чрез точку C двух перпендикуляров к прямой AB. Итак:
Чрез точку, данную вне прямой, можно построить только один перпендикуляр к этой прямой .
Замечание . Если, как мы получили в этом п., CF ⊥ AB (чер. 74), то, очевидно, и AB ⊥ CF.
71. Построим какой-либо ∆ABC (чер. 76) и из каждой его вершины опустим перпендикуляр на противоположную сторону (здесь под именем сторона треугольника надо понимать бесконечную прямую). Каждый из этих перпендикуляров называется высотою треугольника. Следовательно, наша задача может быть выражена так: построить высоты треугольника. Если мы выполним построение перпендикуляров с возможною тщательностью, то в результате увидим, что по-видимому, все три высоты пересекаются в одной точке H, впоследствии мы выясним, что это свойство высот обязательно для всякого треугольника.
При построении высот может быть три случая: 1) все три высоты идут внутри треугольника (чер. 76); 2) две высоты BE и AD располагаются вне треугольника и общая точка H пересечения всех трех высот лежит вне треугольника (чер. 77) и 3) две высоты сливаются со сторонами треугольника (чер. 78), где BA ⊥ AC и CA ⊥ AB.
Ясно, что 3-й случай расположения высот в треугольнике, когда две его высоты сливаются со сторонами (чер. 78), имеет место, если ∠BAC треугольника прямой (∠BAC = d); такой треугольник с прямым углом называется прямоугольным . Так как сумма всех углов треугольника = 2d, а в этом случае ∠A прямой, или = d, то два другие угла (∠B и ∠C) в сумме составляют тоже прямой угол, а следовательно каждый из них в отдельности меньше прямого, или, другими словами, каждый из них острый угол.
Нетрудно теперь различать и два остальных случая: случай, данный на чер. 76, имеет место тогда, когда все 3 угла в треугольнике острые, а случай, данный на чер. 77, имеет место тогда, когда один из внутренних углов (на чер. 77 ∠BCA) тупой.
В самом деле это тот же самый признак, знакомый нам: если 2 стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого, то треугольники равны. Теперь про углы не говорится потому, что между катетами расположены прямые углы, а они всегда равны (на чер. 81). ∠A = ∠A’, как прямые, и достаточно для равенства ∆ABC и ∆A’B’C’ знать, что AB = A’B’ и AC = A’C’).
2-й признак. Если катет и прилежащий острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого, то эти прямоугольные треугольники равны.
Это опять-таки знакомый нам признак: если 2 угла и сторона между ними одного треугольника соответственно равны двум углам и стороне между ними другого треугольника, то эти треугольники равны. Теперь про равенство углов, прилегающих к равным катетам у другого конца каждого, не говорится, так как эти углы прямые, а они всегда равны (на чер. 81, где ∠A и ∠A’ прямые, достаточно для равенства треугольников знать, что AB = A’B’ и ∠B = ∠B’).
Можно вместо прилежащих углов к катетам взять углы, противолежащие этим катетам: если ∠C = ∠C’, то и ∠B = ∠B’, так как ∠B + ∠C = d и ∠B’ + ∠C’ = d.
Признак равенства треугольников по трем равным сторонам здесь нет нужды применять: мы уже знаем, что для равенства прямоугольных треугольников достаточно знать равенство двух сторон, а именно двух катетов (1-й признак).
3-й признак. Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого, то эти прямоугольные треугольники равны.
Этот признак является следствием общего признака: если 2 угла и сторона между ними одного треугольника соответственно равны двум углам и стороне между ними другого, то эти треугольники равны. В самом деле, пусть имеем 2 прямоугольных треугольника ABC и A’B’C’ (чер. 81), у которых BC = B’C’ и ∠С = ∠С’. Так как мы знаем, что ∠B + ∠C = d (сумма всех трех внутренних углов ∆ABC = 2d, но ∠A = d, следов., ∠B + ∠C = d) и ∠B’ + ∠C’ = d (ибо ∠A’ = d), а нам известно, что ∠C = ∠C’, то отсюда приходим к заключению, что ∠B = ∠B’ и тогда сторона BC и два прилегающих к ней угла ∠C и ∠B одного треугольника равны соответственно стороне B’C’ и двум прилегающим к ней углам другого ∠C’ и ∠B’, а мы знаем, что в этом случае ∆ABC = ∆A’B’C’.
4-й признак. Если гипотенуза и катет одного прямоугольного треугольника равны соответственно гипотенузе и катету другого, то такие прямоугольные треугольники равны.
Этот признак удобнее всего выяснить следующим образом. Пусть имеем 2 прямоугольных треугольника ABC и A’B’C’ (чер. 82), причем ∠B = d и ∠B’ = d, у которых AC = A’C’ и AB = A’B’. Приложим ∆A’B’C’ и ∆ABC так, чтобы у них совпали равные катеты, т. е. A’B’ совпал бы с AB, и сами треугольники расположились бы по разные стороны от прямой AB, для этого иногда (напр., в случае, данном на чертеже) придется ∆A’B’C’ перевернуть другою стороною. Тогда сторона B’C’ должна пойти по такому направлению BC”, чтобы ∠ABC” оказался прямым (ибо ∠B’ = d), а, следов., ∠CBC” оказался бы выпрямленным, т. е. Направление BC” должно быть продолжением стороны CB. Если точка C’ попадет в точку C”, то, построив сторону AC”, получим ∆ABC”, равный ∆A’B’C’. Так как CBC” есть прямая линия, то получим еще ∆ACC”, у которого сторона AC = AC”, потому что AC” есть гипотенуза A’C’ треугольника A’B’C’, помещенного в положение ABC”. Следовательно, ∆ACC” равнобедренный, а в таком случае углы при его основании равны, т. е. ∠C = ∠C”, или ∠C = ∠C’. Оказалось, что у ∆ABC и ∠A’B’C’ имеется еще по равному острому углу, а в таком случае, на основании предыдущего признака, мы можем заключить, что ∆ABC = ∆A’B’C’.
1) Два перпендикуляра к прямой параллельны.
2) Прямая, перпендикулярная к одной из параллельных, перпендикулярна и к другой.
Третью часть прямого угла легко построить: каждый внутренний угол равностороннего треугольника =
, а его половина =
. Наиболее удобное расположение построения следующее: принимая вершину A прямого угла за центр (чер. F), строим произвольным радиусом окружность: затем, принимая за центры точки C и B – точки пересечения построенной окружности со сторонами прямого угла – строим тем же радиусом дуги, пересекающие построенную окружность в точках D и E. Тогда ∆AEB и ∆ACD равносторонние, и лучи AD и AE делят прямой ∠A на 3 равных части.
Правило встречается в следующих упражнениях
Задание 198,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 199,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 218,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 11,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 281,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 283,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 19,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 567,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1148,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой
Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.
Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .
Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.
Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.
Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 ( x 1 , y 1 ) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .
По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .
Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = – 1 .
После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен – 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 ( x 1 , y 1 ) с угловым коэффициентом – 1 k b в виде y – y 1 = – 1 k b · ( x – x 1 ) .
Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.
Применение знания о перпендикулярных прямых
Напоследок ответим на вопрос, который мог возникнуть у некоторых из вас: «А как в древности люди решали вопрос с построением перпендикулярных прямых, прямых углов в частности? Были ли у них приспособления для этого?»
Построение прямых углов было важным умением даже в древности, так как от этого зависела крепость и устойчивость возведенных стен зданий, мостов, механизмов для строительства. Один лишний градус — и целый город мог оказаться в опасности из-за обрушившегося дворца или башни.
Древние зодчие поняли, что возлагать все надежды на четырехугольники не стоит, потому что квадраты и прямоугольники легко превращаются в параллелограммы, меняя величину углов и оставляя неизменными длины сторон. Стоит только немного потянуть за «ушки» квадрата, как он начинает беспощадно ломать прямые углы, а ведь в условиях строительства многое может пойти не так и искривить конструкцию: ветер, изменение температуры, неточность мастера.
Хорошо, что есть более стабильная фигура — треугольник. Все дело в соотношении его сторон и углов, а еще в невозможности создать несколько треугольников из сторон заданной длины. Если у вас есть отрезки длиной 6, 8 и 10 сантиметров, из них можно составить только один треугольник. В случае, если одна сторона растянется под действием нагрузки или сожмется из-за понижения температуры — треугольник просто перестанет существовать.
С этой точки зрения прямоугольные треугольники — лучшие друзья архитекторов, которые хотят строить ровные и красивые здания. Зодчие Древнего Египта использовали шнур или веревку, на которых через равные расстояния были завязаны 12 узлов. Строители натягивали такой шнур, создавая прямоугольный треугольник со сторонами 3, 4 и 5 единиц. Такой метод получения угла, равного 90 градусам, был сверхточным, а по сторонам-катетам-шнурам можно было выкладывать кирпичи или камни.
Удивлены? Еще больше поразительных фактов и, самое главное, помощь в понимании алгебры и геометрии вы получите на курсах профильной математики в онлайн-школе Skysmart. Секреты древних архитекторов, бытовые задачки и подготовка к экзаменам — все на удобной платформе с опытными учителями. Ждем вас!
Уравнение перпендикулярной прямой
Как составить уравнение прямой перпендикулярной данной прямой и проходящей через данную точку?
Пусть y=k1x+b1 — данная прямая. С учётом условия перпендикулярности прямых уравнение прямой, перпендикулярной данной, имеет вид
Если эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b.
1) Написать уравнение прямой, проходящей через точку A(-10;3), перпендикулярной прямой y=5x-11.
Так как прямые перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку, то
Значит уравнение прямой, перпендикулярной прямой y=5x-11, имеет вид
Так как прямая проходит через точку A(-10;3), то координаты A удовлетворяют уравнению прямой:
Итак, уравнение прямой, перпендикулярной прямой y=5x-11 и проходящей через точку A(-10;3)
2) Написать уравнение прямой, перпендикулярной прямой x= -2, проходящей через точку M(-5;9).
Прямая x= -2 перпендикулярна оси абсцисс. Значит, прямая, уравнение которой мы ищем, параллельна оси абсцисс, то есть ищем уравнение прямой в виде y=b.
Так как искомая прямая проходит через точку M(-5;9), то координаты M удовлетворяют уравнению прямой: y=9.
3) Написать уравнение прямой, перпендикулярной прямой y=4, проходящей через точку F(7;-5).
Прямая y=4 перпендикулярна оси ординат. Следовательно, прямая, уравнение которой мы ищем, параллельна оси ординат, а значит, её уравнение имеет вид x=a.
Так как эта прямая проходит через точку F(7;-5), то координаты F удовлетворяют уравнению прямой: x=7.
Параллельность и перпендикулярность прямых и плоскостей в пространстве
Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости называются скрещивающимися. Прямая и плоскость в пространстве называются параллельными, если они не пересекаются.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.
Две плоскости называются параллельными, если они не пересекаются.
Если две параллельные плоскости пересекаются третьей плоскостью, то прямые пересечения плоскостей параллельны. Через точку, не лежащую в данной плоскости, можно провести параллельную плоскость, и притом только одну.
Отрезки параллельных прямых между параллельными плоскостями равны.
Прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом. Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой в плоскости, проходящей через точку их пересечения.
Прямая, пересекающая плоскость, перпендикулярна плоскости, если она перпендикулярна двум прямым в плоскости, проходящим через точку их пересечения.
Через каждую точку плоскости можно провести перпендикулярную ей прямую, и только одну. Все прямые, перпендикулярные данной плоскости, параллельны.
Перпендикуляр, опущенный из данной точки на данную плоскость, – это отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, которая перпендикулярна плоскости. Основание перпендикуляра – это его конец, лежащий в плоскости.
Расстояние от точки до плоскости – это длина перпендикуляра, опущенного от этой точки на плоскость.
Наклонная, проведенная из данной точки к данной плоскости, – это любой отрезок, соединяющий данную точку с точкой плоскости, который не является перпендикуляром к плоскости. Конец отрезка, который лежит в плоскости, – это основание наклонной. Проекция наклонной – это отрезок, который соединяет основания перпендикуляра (точку С) и наклонной (точку А).
Если прямая, проведённая на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной. И обратно, если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Две пересекающиеся плоскости называются перпендикулярными, если плоскость, перпендикулярная прямой их пересечения, пересекает данные плоскости по перпендикулярным прямым.
Поделись с друзьями в социальных сетях:
Что можно провести через точку не лежащую на прямой
1. Через прямую и не лежащую на ней точку можно провести плоскость, притом только одну. Доказательство: 1) рассмотрим прямую (a) и точку (A), которая не находится на этой прямой.
Способы построения перпендикулярных прямых
Но как можно построить перпендикулярные прямые? Что для этого может понадобиться? Давайте разберем все доступные нам способы.
Самый легкий — воспользоваться транспортиром. Построим прямую а и точку А, не лежащую на этой прямой. Совместим значение 90 градусов с точкой таким образом, чтобы нижняя часть транспортира в виде линейки полностью совпала с прямой, и сделаем засечку в отверстии транспортира. Соединим точку А с поставленной засечкой до пересечения с прямой.
Но что делать, если транспортир благополучно забыт дома и у нас есть только линейка и угольник? Внимательно рассмотрите рисунок и попрактикуйтесь в построении дома.
Какое из следующих утверждений верно через точку не лежащую на данной прямой можно провести прямую перпендикулярно этой прямой
Ответы1. Верно только утверждение 1). Теорема: Через точку, не лежащую на данной прямой, можно провести перпендикулярную ей прямую, и только одну.
Что можно провести через точку не лежащую на прямой
Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой
1. Анализ. Предполагаем, что задача решена: ОС ^ а (рис. 26):
Заметим, что легко построить равнобедренный треугольник, у которого СО – медиана. Для этого достаточно отложить на прямой а равные отрезки ОВ и ОK, а затем соединить какую угодно точку перпендикуляра, кроме точки О, с концами отрезка ВK.
1) Проведем окружность произвольного радиуса с центром в точке О. Точки пересечения окружности с прямой а обозначим В и K. 2) Проведем окружность с центром в точке В, радиус которой больше половины длины отрезка ВK. 3) Проведем окружность того же радиуса с центром в точке K. 4) Одну их точек пересечения окружностей обозначим С.5) Проведем прямую ОС.
Построение прямой, перпендикулярной а, которая проходит через точку О, не лежащую на прямой а.
1. Анализ. Предполагаем, что задача решена: ОС ^ а (рис. 27):
Легко построить равнобедренный треугольник АОВ, в котором ОМ является высотой, и поэтому медианой и биссектрисой. Для этого достаточно провести окружность с центром в точке О и обозначить точки пересечения с прямой а буквами А и В (рис. 28).
Остается найти еще одну точку перпендикуляра, который проходит через середину М отрезка АВ. Для этого достаточно построить еще один равнобедренный треугольник с основанием АВ.
1) Проведем окружность произвольного радиуса с центром в точке О. Точки пересечения окружности с прямой а обозначим А и В.2) Проведем окружность с центром в точке А, радиус которой больше половины длины отрезка АВ. (Радиус этой окружности может быть таким же, как радиус первой окружности с с центром в точке О.)3) Проведем окружность того же радиуса с центром в точке В.4) Одну их точек пересечения окружностей обозначим С.5) Проведем прямую ОС .
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Через точку не лежащую на данной прямой можно провести прямую параллельную перпендикулярно
Какое из следующих утверждений верно?
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) В любой прямоугольник можно вписать окружность.
3) Каждая из биссектрис равнобедренного треугольника является его медианой.
В ответе запишите номер выбранного утверждения.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой. — верно.
2) В любой прямоугольник можно вписать окружность. — неверно, в четырехугольник, у которого суммы длин противоположных сторон равны, можно вписать окружность.
3) Каждая из биссектрис равнобедренного треугольника является его медианой. — неверно, верным будет утверждение «Каждая из биссектрис равностороннего треугольника является его медианой».
Свойства перпендикулярных прямых
Перпендикулярные прямые обладают свойствами, которые можно использовать при решении геометрических задач. Давайте изучим их и приведем доказательство каждого.
Две прямые, перпендикулярные к третьей, не пересекаются
Конечно же, это свойство хорошо просматривается при построении. Но как мы уже выяснили, математики — народ сомневающийся, поэтому попробуем обосновать, почему это так.
Предположим, что прямые АА1 и ВВ1 все же пересекутся в точке К. Что бы это значило? Что мы совершили невероятное и опровергли теорему о перпендикулярных прямых! Ведь тогда получается, что через точку К проходит несколько перпендикулярных прямых, которые в свою очередь пересекают прямую а под углом 90 градусов! Как было сказано выше, это невозможно, а значит и прямые АА1 и ВВ1 не пересекаются.
Перпендикуляр, проведенный из точки к прямой, называется расстоянием от прямой до этой точки
Интересно, что такое расстояние является кратчайшим.
Представьте, что вам необходимо проложить путь от вас до огромного торгового центра, состоящего из множества магазинчиков. Вам не важно, в какой из них заглянуть, вы просто хотите потратить на дорогу как можно меньше времени. Какой путь вы выберете?
Конечно же, путь номер 2! Но есть ли этому научное объяснение?
Треугольник АВС прямоугольный, АВ и ВС— катеты, АС — гипотенуза. Согласно соответствию углов и сторон, в треугольнике наибольшая сторона лежит напротив наибольшего угла. Таким углом является прямой угол В, а наибольшая сторона — гипотенуза АС. Под каким бы углом мы ни расположили гипотенузу, она всегда будет больше остальных сторон.
В задачах по геометрии часто просят найти расстояние между различными элементами: между двумя точками, между точкой и прямой, между двумя прямыми. Теперь вы знаете, что под расстоянием подразумевают перпендикуляр! Благодаря этому знанию вы избежите множества ошибок, ведь между двумя элементами можно провести бесконечное множество прямых (и кривых), но только один вариант будет верным.
Кстати, перпендикуляр, проведенный из вершины угла фигуры на прямую, содержащую противоположную сторону, известен под именем высота. С высотами связано множество теорем и свойств, которые вы будете изучать немного позже. В качестве интриги оставим вам пример того, где находится точка пересечения высот в треугольниках разного типа. Заметили что-то необычное?
Какие следующих утверждений верны через точку не лежащую на данной прямой можно провести
В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой.
Уравнение прямой, проходящей через заданную точку перпендикулярно заданной прямой
В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.
Решение примеров
Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.
Записать уравнение прямой а, которая проходит через точку с координатами M 1 ( 7 , – 9 ) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x – 2 3 = y + 4 1 .
Получим уравнение вида: 3 · ( x – 7 ) + 1 · ( y – ( – 9 ) ) = 0 ⇔ 3 x + y – 12 = 0
Полученное уравнение является искомым.
Ответ: 3 x + y – 12 = 0 .
Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x – y + 1 = 0 .
Ответ: x 2 = y – 1 .
Записать уравнение прямой, проходящей через точку с координатами M 1 ( 5 , – 3 ) перпендикулярно прямой y = – 5 2 x + 6 .
Из уравнения y = – 5 2 x + 6 угловой коэффициент имеет значение – 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение – 1 – 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 ( 5 , – 3 ) перпендикулярно прямой y = – 5 2 x + 6 , равна y – ( – 3 ) = 2 5 · x – 5 ⇔ y = 2 5 x – 5 .