Пробные варианты ЕГЭ 2023 по математике (база) из различных источников.
Изменения в содержании КИМ отсутствуют.
Пробные варианты ЕГЭ 2023 по математике (база)
Экзаменационная работа включает в себя 21 задание.
На выполнение работы отводится 3 часа (180 минут).
Все бланки ЕГЭ заполняются яркими чёрными чернилами.
Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются.
Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Пробные варианты ЕГЭ 2023 по математике профильного уровня
Сборник задач по стереометрии для 10-11 классов
Задание 10 по профильной математике – новые задачи по теории вероятностей в ЕГЭ-2022
Тест по теме «Производная» 11 класс алгебра с ответами
Основные тригонометрические тождества и формулы
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
Инструкция по выполнению работы
Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Сначала запишите ответы к заданиям в поле ответа в тексте работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания.
Если ответом является последовательность цифр, как в приведённом ниже примере, то запишите эту последовательность в бланк ответов № 1 без пробелов, запятых и других дополнительных символов.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
После завершения работы проверьте, чтобы ответ на каждое задание в бланке ответов № 1 был записан под правильным номером
Пробные варианты ЕГЭ 2022 по математике профильного уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (профиль)
Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности.
Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1–11 записываются по приведённому образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1
При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
Тренировочный вариант №210906 ЕГЭ 2022 по математике базовый уровень 11 класс для подготовки на 100 баллов от 6 сентября 2021 года.
Данный вариант составлен по новой демоверсии ФИПИ экзамена ЕГЭ 2022 года, к тренировочным заданиям прилагаются решения и правильные ответы.
Тренировочный вариант по математике (КИМ): задания
Решу ЕГЭ 2022 по математике базовый уровень тренировочный вариант №210906
2)На автозаправке клиент отдал кассиру 1000 рублей и попросил залить бензин до полного бака. Цена бензина 32 рубля за литр. Клиент получил 72 рубля сдачи. Сколько литров бензина было залито в бак?
4)На рисунке жирными точками показана среднесуточная температура воздуха в Риге за каждый день с 4 по 17 апреля 1980 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности жирные точки соединены линией. Определите по рисунку, какого числа среднесуточная температура была наименьшей за данный период.
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.
6)Тетрадь стоит 24 рубля. Сколько рублей заплатит покупатель за 60 тетрадей, если при покупке более 50 тетрадей магазин делает скидку 10% от стоимости всей покупки?
7)Найдите значение выражения 9 ∙ 103 + 5 ∙ 102 + 3 ∙ 101 .
8)Площадь поверхности прямоугольного параллелепипеда с рёбрами 𝑎, 𝑏 и 𝑐 вычисляется по формуле 𝑆 = 2(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐). Найдите площадь поверхности прямоугольного параллелепипеда с рёбрами 5, 6 и 20.
9)Найдите корень уравнения log2 (−5𝑥 + 3) = −1.
10)Диагональ прямоугольного телевизионного экрана равна 100 см, а высота экрана – 60 см. Найдите ширину экрана. Ответ дайте в сантиметрах.
11)На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 5 прыгунов из России и 7 прыгунов из Китая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что вторым будет выступать прыгун из Китая.
12)Клиент хочет арендовать автомобиль на сутки для поездки протяжённостью 500 км. В таблице приведены характеристики трёх автомобилей и стоимость их аренды. Помимо аренды, клиент обязан оплатить топливо для автомобиля на всю поездку. Цена дизельного топлива – 25 рублей за литр, бензина – 35 рублей за литр, газа – 20 рублей за литр. Сколько рублей заплатит клиент за аренду и топливо, если выберет самый дешёвый вариант?
13)Аквариум имеет форму прямоугольного параллелепипеда с размерами 80 см × 30 см × 40 см. Сколько литров составляет объём аквариума? В одном литре 1000 кубических сантиметров.
15)В трапеции 𝐴𝐵𝐶𝐷 известно, что 𝐴𝐷 = 8, 𝐵𝐶 = 7, а её площадь равна 45. Найдите площадь треугольника 𝐴𝐵𝐶.
16)Сторона основания правильной треугольной призмы 𝐴𝐵𝐶𝐴1𝐵1𝐶1 равна 4, а высота этой призмы равна 4√3. Найдите объём призмы 𝐴𝐵𝐶𝐴1𝐵1𝐶1 .
18)Виктор старше Дениса, но младше Егора. Андрей не старше Виктора. Выберите утверждения, которые верны при указанных условиях. 1) Егор самый старший из указанных четырёх человек. 2) Андрей и Егор одного возраста. 3) Виктор и Денис одного возраста. 4) Денис младше Егора. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
19)Найдите четырёхзначное натуральное число, кратное 45, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.
20)Петя и Митя выполняют одинаковый тест. Петя отвечает за час на 10 вопросов теста, а Митя — на 16. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Мити на 117 минут. Сколько вопросов содержит тест?
21)В корзине лежит 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
Другие тренировочные варианты ЕГЭ по математике 11 класс
2 новых тренировочных варианта пробного ЕГЭ 2022 по математике 11 класс базовый и профильный уровень с ответами, варианты составлены в формате реального ЕГЭ 2022 по математике.
Решать вариант ЕГЭ 2022 по математике 11 класс база
2)Каждый день во время конференции расходуется 90 пакетиков чая. Конференция длится 8 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?
4)На диаграмме показано количество посетителей сайта РИА «Новости» в течение каждого часа 8 декабря 2009 года. По горизонтали указывается время (в часах), по вертикали — количество посетителей сайта на протяжении этого часа. Определите по диаграмме, в течение какого часа на сайте РИА «Новости» побывало максимальное количество посетителей.
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.
6)Держатели дисконтной карты книжного магазина получают при покупке скидку 10 %. Книга стоит 230 рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу?
10)Диагональ прямоугольного экрана телевизора равна 50 см, а ширина экрана — 40 см. Найдите высоту экрана. Ответ дайте в сантиметрах.
11)Вероятность того, что стекло мобильного телефона разобьётся при падении на твёрдую поверхность, равна 0,84. Найдите вероятность того, что при падении на твёрдую поверхность стекло мобильного телефона не разобьётся.
12)Сергей Петрович хочет купить в интернет-магазине микроволновую печь определённой модели. В таблице показано 6 предложений от разных интернет-магазинов. Сергей Петрович считает, что покупку нужно делать в магазине, рейтинг которого не ниже 4. Среди магазинов, удовлетворяющих этому условию, выберите предложение с самой низкой стоимостью покупки с учётом доставки. В ответе запишите номер выбранного магазина.
13)Плоскость, проходящая через точки A, B и C (см. рис.), разбивает правильную треугольную призму на два многогранника. Сколько вершин у получившегося многогранника с меньшим числом граней?
15)В треугольнике ABC известно, что AB=BC=25, AC=14. Найдите площадь треугольника ABC.
16)Объём конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса.
18)В некоторый момент температура воздуха в Москве была равна 3 °С. В этот же момент в Архангельске было на 4 °С холоднее, чем в Москве, а в Махачкале на 3 °С теплее, чем в Москве. Выберите все утверждения, которые были верны в этот момент при указанных условиях.
19)Найдите четырёхзначное число, кратное 15, произведение цифр которого больше 0, но меньше 25. В ответе укажите какое-нибудь одно такое число.
20)Смешали некоторое количество 20-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
21)Если бы каждый из двух множителей увеличили на 1, то их произведение увеличилось бы на 11. На сколько увеличится произведение этих множителей, если каждый из них увеличить на 2?
Задания и ответы с варианта профильного уровня
2)На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 3 прыгуна из Голландии и 4 прыгуна из Колумбии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что восьмым будет выступать прыгун из Голландии.
3)Четырёхугольник ABCD вписан в окружность. Угол ABC равен 82°, угол ABD равен 47°. Найдите угол CAD. Ответ дайте в градусах.
4)Найдите значение выражения log2 24 − log2 0,75.
5)В цилиндрический сосуд, в котором находится 10 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,6 раза. Чему равен объём детали? Ответ выразите в дм 3 .
8)В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составит концентрация получившегося раствора?
9)На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐. Найдите значение 𝑓(−2).
10)Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.
13)В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что ∠ACB=45°, AB=3√2, CC1=6. а) Докажите, что угол между прямыми AC1 и BC равен 60°. б) Найдите расстояние от точки B до прямой AC1.
Ответ: б) 1,5√6
15)15-го декабря планируется взять кредит в банке на 11 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца с 1-го по 10-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; — 15-го числа 10-го месяца долг составит 300 тысяч рублей; — к 15-му числу 11-го месяца кредит должен быть полностью погашен. Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1388 тысяч рублей?
Ответ: 1300 тыс. рублей
16)В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. а) Докажите, что отрезки AM и MK равны. б) Найдите MK, если AB=5, AC=8.
Ответ: б) 2,88
18)Максим должен был умножить двузначное число на трёхзначное число (числа с нуля начинаться не могут). Вместо этого он просто приписал трёхзначное число справа к двузначному, получив пятизначное число, которое оказалось в N раз (N – натуральное число) больше правильного результата. а) Могло ли N равняться 2? б) Могло ли N равняться 10? в) Каково наибольшее возможное значение N?
Ответ: а) да б) нет в) 9
Статград математика 11 класс ЕГЭ 2022 варианты с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Варианты, ответы и решения пробного ЕГЭ 2022 по математике базовый и профильный уровень для 11 класса, официальная дата проведения пробного ЕГЭ 2022 19 марта.
Пробный ЕГЭ по математике 2022 базовый уровень
Задания с ответами:
1)На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.
Правильный ответ: 0,33
2)Сторона AB треугольника ABC равна 1. Противолежащий ей угол C равен 150°. Найдите радиус окружности, описанной около этого треугольника.
Правильный ответ: 1
3)В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 4; объем пирамиды равен 6. Найдите длину отрезка OS.
Правильный ответ: 4,5
4)Один мастер может выполнить заказ за 12 часов, а другой — за 6 часов. За сколько часов выполнят заказ оба мастера, работая вместе?
5)Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.
Правильный ответ: 0,42
6)За прохождение каждого уровня платной сетевой игры можно получить от одной до трех звезд. При этом со счета участника игры списывается 75 рублей при получении одной звезды, 60 рублей — при получении двух звезд и 45 рублей при получении трех звезд. Миша прошел несколько уровней игры подряд. а) Могла ли сумма на его счете уменьшиться при этом на 330 рублей? б) Сколько уровней игры прошел Миша, если сумма на его счете уменьшилась на 435 рублей, а число полученных им звезд равно 13? в) За пройденный уровень начисляется 5000 очков при получении трех звезд, 3000 — при получении двух звезд и 2000 — при получении одной звезды. Какую наименьшую сумму (в рублях) мог потратить на игру Миша, если он набрал 50 000 очков, получив при этом 32 звезды?
Правильный ответ: а-да, б-7, в-780 рублей
2)В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Правильный ответ: 0,14
5)В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.
Правильный ответ: 10
6)На рисунке изображён график функции y = f(x), определённой на интервале (−4; 4). Найдите корень уравнения f '(x) = 0.
Правильный ответ: 2
8)Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Правильный ответ: 18
10)Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?
Правильный ответ: 5
15)В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 7,5 млн рублей?
Правильный ответ: 4 года
16)В полуокружности с диаметром MN расположены две окружности с центрами O1 и O2, касающиеся друг друга, полуокружности и прямой MN (при этом точки касания c полуокружностью — это соответственно A и B). а) Докажите, что прямые O1A, O2B и MN пересекаются в одной точке. б) Радиусы окружностей равны 2 и 5. Найдите радиус полуокружности.
18)На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно − 18. а) Сколько чисел написано на доске? б) Каких чисел написано больше: положительных или отрицательных? в) Какое наибольшее количество положительных чисел может быть среди них?
2)В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Правильный ответ: 0,375
3)Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.
Правильный ответ: 64
5)Объем параллелепипеда ABCDA B C D 1 1 1 1 равен 9. Найдите объем треугольной пирамиды ABCA1 .
Правильный ответ: 1,5
8)Расстояние между пристанями A и B равно 120 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.
Правильный ответ: 22
10)Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.
Правильный ответ: 0,0296
15)Планируется открыть вклад на 4 года, положив на счет целое число миллионов рублей. В конце каждого года сумма, лежащая на вкладе, увеличивается на 10%, а в начале третьего и четвертого года вклад пополняется на 3 миллиона рублей. Найдите наименьший первоначальный вклад, при котором начисленные проценты за весь срок будут более 5 миллионов рублей.
Правильный ответ: 9 млн. руб
16)Дан треугольник ABC со сторонами AB = 4, BC = 5 и AC = 6. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведенной из вершины A.
Правильный ответ: 3 корень из 2
18)В каждой из девяти ячеек строки слева направо в некотором (возможно, ином) порядке расставлены по одному 9 чисел: 1, 2, 3, 4, 5, 6, 7, 8 и 9. а) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, и ровно одно, делящееся на 4? б) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, а среди любых двух подряд (идущих слева направо) из этих чисел есть ровно одно простое число? в) Какое наибольшее значение может принимать произведение суммы всех чисел, стоящих на нечётных местах, и суммы всех чисел, стоящих на чётных местах этой строки?
2)Шоколадка стоит 35 рублей. В воскресенье в супермаркете действует специальное предложение: заплатив за две шоколадки, покупатель получает три (одну в подарок). Какое наибольшее количество шоколадок можно получить, потратив не более 200 рублей в воскресенье?
Правильный ответ: 7
4)На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было осенью месяцев, когда среднемесячная температура превышала 12 градусов Цельсия.
5)На рисунке изображён план местности (шаг сетки плана соответствует расстоянию 1 км на местности). Оцените, скольким квадратным километрам равна площадь озера Щало, изображённого на плане. Ответ округлите до целого числа.
6)Магазин закупает цветочные горшки по оптовой цене 120 рублей за штуку и продает с наценкой 20%. Какое наибольшее число таких горшков можно купить в этом магазине на 1000 рублей?
10)Дачный участок имеет форму квадрата, стороны которого равны 30 м. Размеры дома, расположенного на участке и имеющего форму прямоугольника, — 8 м × 5 м. Найдите площадь оставшейся части участка. Ответ дайте в квадратных метрах.
Правильный ответ: 860
11)Игральную кость с 6 гранями бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, большее 3.
Правильный ответ: 0,75
12)В городском парке имеется пять аттракционов: карусель, колесо обозрения, автодром, «Ромашка» и «Весёлый тир». В кассах продаётся шесть видов билетов, каждый из которых позволяет посетить один или два аттракциона. Сведения о стоимости билетов представлены в таблице. Андрей хочет посетить все пять аттракционов, но имеет в наличии только 900 рублей. Какие виды билетов он должен купить? В ответе укажите номера (в порядке возрастания номеров), соответствующие видам билетов, без пробелов, запятых и других дополнительных символов.
Правильный ответ: 234
13)Плоскость, проходящая через точки A, B и C (см. рис.), разбивает тетраэдр на два многогранника. Сколько рёбер у получившегося многогранника с большим числом вершин?
14)На рисунке изображён график функции y = f(x). Числа a, b, c, d и e задают на оси x четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.
Правильный ответ: 2143
15)В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен . Найдите вписанный угол ACB. Ответ дайте в градусах.
Правильный ответ: 35
16)Даны два конуса. Радиус основания и образующая первого конуса равны, соответственно, 2 и 4, а второго — 6 и 8. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого?
18)Пять жильцов многоквартирного дома — Андрей, Борис, Виктор, Денис и Егор — имеют различный возраст. При этом известно, что возраст Андрея больше, чем сумма возрастов Бориса и Виктора, Виктор старше Дениса, но младше Егора. Выберите утверждения, которые следуют из приведённых данных. 1) Андрей самый старший из жильцов 2) Егор старше Бориса 3) Андрей старше Дениса 4) Борис старше Егора.
19)Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
Правильный ответ: 1124
20)На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
Правильный ответ: 25
21)Три луча, выходящие из одной точки, разбивают плоскость на 3 разных угла, измеряемых целым числом градусов. Наибольший угол в 2 раза больше наименьшего. Сколько значений может принимать величина среднего угла?
Правильный ответ: 17
Готовитесь к ЕГЭ 2022? Прорешайте типовые варианты статграда:
Варианты 2016-2017 учебного года
Варианты 2017-2018 учебного года
Варианты 2018-2019 учебного года
Варианты 2019-2020 учебного года
(10 класс Теория вероятностей и статистика)
(10 класс Итоговая уровневая работа)
Варианты 2020-2021 учебного года
Варианты 2021-2022 учебного года
Варианты 2022-2023 учебного года
08.02.2023 (10 класс)
ID формулыКлассы формулыLaTeX