Признак равенства равнобедренных треугольников по основанию и углу при основании
Если основание и угол при основании равнобедренного треугольника соответственно равны основанию и углу при основании другого равнобедренного треугольника, то такие треугольники равны.
Доказательство. В равнобедренном треугольнике углы при основании равны. тогда имеем: основание и две углы одного равнобедненного треугольника равны основанию и двум углам другого равнобедненного треугольника. Тогда эти треугольники равны по второму признаку равенства треугольников.
Признак равенства равнобедренных треугольников по основанию и боковой стороне
Если основание и боковая сторона одного равнобедренного треугольника соответственно равны основанию и боковой стороне другого равнобедненного треугольника, то эти треугольники равны.
Действительно. Поскольку треугольник равнобедренный, то боковые стороны равны. То есть три стороны одного равнобедренного треугольника соответственно равны трем сторонам другого равнобедненного треугольника. А по третьему признаку равенства треугольников, эти треугольники равны.
P=4a найдем сторону ромба АВСД. Диогонали ромба взаимно перпендикулярны пусть угол а=120 градусов т.к диогонали ромба делят его углы пополам ВАО=60. О-точка пересечения диогоналей ромба следовательно угол АВО=30 Т.К треугольник АВО прямоугольный то катет лежащий против угла в 30 градусов равен 1/2 гепотинузы Ао=7.5см АВ=15см P=4*15=60см
1. Внешний угол при вершине А равен: 180-60=130(гр)-так как все внутренние углы в равностороннем тр-ке по 60 градусов,а развёрнутый,в который входят эти 2 угла, равен 180 гр. 2.Медиана делит сторону пополам,тогда сторона равна 1) 8+8=16(см) 2)16*3=48(см)-периметр треугольника. В третьем задании ошибка и не решается
Тебе еще нужна задача?
∠CDH = ∠HDK = 120 : 2 = 60° (В равнобедренном треугольнике высота, проведённая к основанию является его биссектрисой)
∠DAH = 180 – 60 – 60 = 60° (сумма углов треугольника равна 180°)
Ответ: ∠DAH = ∠HDA = ∠DHA = 60°.
Прямоугольный треугольник – это треугольник, у которого один угол прямой (равен $90$ градусов).
Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника
1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$
6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$
7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В$: $АС$ – противолежащий катет; $ВС$ – прилежащий катет.
Для острого угла $А$: $ВС$ – противолежащий катет; $АС$ – прилежащий катет.
1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
В прямоугольном треугольнике $АВС$ для острого угла $В$:
5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
$sin BOA=sin BOC;$
$cos BOA=-cos BOC;$
$tg BOA=-tg BOC;$
$ctg BOA=-ctg BOC.$
Значения тригонометрических функций некоторых углов
Площадь прямоугольного треугольника равна половине произведения его катетов
Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то
Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:
Катет $ВС$ мы можем найти по теореме Пифагора:
Подставим найденное значение в формулу косинуса
$cos ABD = – 0,3$
Распишем синус угла $А$ по определению:
Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.
Применим теорему Пифагора, чтобы отыскать $«х»$
Так как длина $АВ$ составляет пять частей, то $3∙5=15$
В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
В прямоугольном треугольнике $АВС$ для острого угла $В$:
Сумма углов треугольника — это сумма всех внутренних углов треугольника.
Так, как углы измеряются в градусах, соответственно значение суммы углов треугольника также измеряется в градусах.
Сумма углов треугольника есть величина постоянная, неизменяемая, она равна 180 градусам, вне зависимости от вида рассматриваемого треугольника.
На рисунке 1 изображены равносторонний, разносторонний и прямоугольный треугольники, их суммы внутренних углов равны 180 градусам.
Также, существует теорема, которая доказывает утверждение о том, что сумма углов треугольника 180 градусов, она называется теоремой о сумме углов треугольника.
Теорема о сумме углов треугольника — это теорема в геометрии о сумме углов произвольного треугольника на плоскости.
Сумма углов треугольника — чему она равна?
Сумма углов треугольника — важная, но достаточно простая тема, которую проходят в 7 классе на геометрии. Тема состоит из теоремы, короткого доказательства и нескольких логичных следствий. Знание этой темы помогает в решении геометрических задач при последующем изучении предмета.
Теорема — чему равны сложенные между собой углы произвольного треугольника?
Теорема гласит — если взять любой треугольник вне зависимости от его вида, сумма всех углов неизменно составит 180 градусов. Доказывается это следующим образом:
Если сумма углов, обозначенных цифрами, составляет 180 градусов, то и сумма углов А, В и С признается равной 180 градусам. Это правило верно для любого треугольника.
Что следует из геометрической теоремы
Принято выделять несколько следствий из приведенной теоремы.
Можно вывести следующее правило — в любом из треугольников есть как минимум два острых угла. В некоторых случаях треугольник состоит из трех острых углов, а если их только два, то третий угол будет тупым либо прямым.
Также нужно знать, что предусмотрены специальные названия для сторон прямоугольных треугольников. «Длинная» сторона, которая расположена напротив прямого угла, называется гипотенузой, а оставшиеся «короткие» стороны носят название катетов. В последующих темах геометрии эти названия упоминаются очень часто.
Сумма треугольника равна 180 градусов.
Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.
А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.
1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение
2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.
Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?
Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен , а два других равны .
3. На рисунке угол равен , угол равен , угол равен . Найдите угол . Ответ дайте в градусах.
Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.
Сначала найдем угол .
Угол , смежный с углом равен .
Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.
Ты нашел то, что искал? Поделись с друзьями!
4. Углы треугольника относятся как . Найдите меньший из них. Ответ дайте в градусах.
Пусть углы треугольника равны , и . Запишем, чему равна сумма углов этого треугольника.
Как же все-таки доказать, что сумма углов треугольника равна 180 градусов? Очень просто. На нашем рисунке угол равен углу (они накрест лежащие). Угол равен углу (тоже накрест лежащие). Развернутый угол равен . Значит, и сумма углов треугольника тоже равна 180 градусов.
Сумма трёх углов выпуклого четырёхугольника равна 300 градусов?
Сумма трёх углов выпуклого четырёхугольника равна 300 градусов.
Найти четвёртый угол.
Ответ дать в градусах.
В четырехугольнике сумма углов составляет 360 градусов.
Следовательно 3 угла = 300 градусов
И чтобы найти 4 на надо
360 – 300 = 60 ГРАДУСОВ – 4 УГОЛ
300 + 60 = 360 ГРАДУСОВ КАК И ПОЛОЖЕНО В ЧЕТЫРЕХУГОЛЬНИКЕ
Зная, что сумма углов треугольника равна 180 (градусов), найдите сумму углов четырёхугольника, разбив его на два треугольника?
Зная, что сумма углов треугольника равна 180 (градусов), найдите сумму углов четырёхугольника, разбив его на два треугольника.
Зависит ли ответ от вида четырёхугольника (включая невыпуклые)?
Сумма 2 углов равнобедренной трапеции равна 26 градусов Найдите больший угол трапеции Ответ дайте в градусах?
Сумма 2 углов равнобедренной трапеции равна 26 градусов Найдите больший угол трапеции Ответ дайте в градусах.
Сумма двух углов равнобедренной трапеции равна 140 градусов?
Сумма двух углов равнобедренной трапеции равна 140 градусов.
Найдите больший угол трапеции.
Ответ дайте в градусах Ответ :
Сколько сторон имеет выпуклый многоугольник если сумма его углов равна 2520 градусов?
Сколько сторон имеет выпуклый многоугольник если сумма его углов равна 2520 градусов.
Сумма 2 углов равнобедренной трапеции равна 50 градусов Найдите большой угол трапеции Ответ дайте в градусах?
Сумма 2 углов равнобедренной трапеции равна 50 градусов Найдите большой угол трапеции Ответ дайте в градусах.
В выпуклом четырёхугольнике abcd известно, что ab = bc, ad = cd, угол b = 32 градуса, угол d = 94 градуса?
В выпуклом четырёхугольнике abcd известно, что ab = bc, ad = cd, угол b = 32 градуса, угол d = 94 градуса.
Ответ в градусах.
Один угол треугольника равен 50 градусов?
Один угол треугольника равен 50 градусов.
Найди другие углы треугольника, если они равны.
Сумма двух углов треугольника равна 70 градусов.
Один угол больше другого на 10 градусов.
Найди все углы треугольника.
Сумма внутренних углов треугольника равна 180 градусов?
Сумма внутренних углов треугольника равна 180 градусов.
Первый угол на 30 градусов больше второго, а третий угол на 20 градусов меньше первого.
Найти углы треугольника, составив уравнение.
Если угол A, угол B, угол C, угол D – внутренние углы выпуклого четырёхугольника ABCD и угол C тупой, угол A = 75 градусов, угол B = 165 градусов, синус угла С = 24 / 25, то чему равен синус угла D?
Если угол A, угол B, угол C, угол D – внутренние углы выпуклого четырёхугольника ABCD и угол C тупой, угол A = 75 градусов, угол B = 165 градусов, синус угла С = 24 / 25, то чему равен синус угла D?
Сумма углов выпуклого многоугольника равно 1800 градусов?
Сумма углов выпуклого многоугольника равно 1800 градусов.
Найдите число сторон многоугольника.
Вы находитесь на странице вопроса Сумма трёх углов выпуклого четырёхугольника равна 300 градусов? из категории Математика. Уровень сложности вопроса рассчитан на учащихся 5 – 9 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.
15÷2 = 7 и половина яблоки – у каждого 7 – 4 = 3 а у второго 7 + 4 = 11 яблок.
Из городов a и b расстояние между которыми равно 500 км навстречу друг другу одновременно выехали два автомобиля и встретились через 4 часа на расстоянии 260 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км / ч.
▪(2 × 2 × 2) + 2 + (2 ÷ 2) + 2 = 13 (2 × 2 × 2) + 2 + (2 ÷ 2) + 2 = 8 + 2 + 1 + 2 = 13 ▪33 × 3 + 5 ÷ 5 = 100.
2 * 2 * 2 + 2 + 2 + 2 : 2 = 13 (3 + 3 : 3) * (5 * 5) = 100.
2 (а в квадрате – 9 ) 2 ( а – 3 ) ( а + 3).
2а ^ 2 – 18 = 2(а ^ 2 – 9) = 2(а – 3)•2(а + 3).
Потому что сокращаем числитель и знаменатель на 2(делим 2 на 2 и 4 на 2).
4 га 27 м – 96 а 9 м = 3га90а58м (в квадрате) 4027 – 969 = 39058 тоесть 3га90а58м (в квадрате).
X + 205 = 1708 x = 1708 – 205 x = 1503 __________ 1503 + 205 = 1708 Вот с проверкой.
Сумма трех углов выпуклого четырехугольника равна 300 градусов. Найдите четвертый угол. Ответ дайте в градусах.
360 градусов- 300 = 60
Сумма всех углов 4-угольника=360.сумма 3 углов=300Значит 4 угол=360-300=60
Другие вопросы из категории
Основание равнобедренной трапеции равна 9 и 18 см, большая боковая сторона 15 см. Найти: S
2)Один угол параллелограмма в четырнадцать раз больше другого.Найдите меньший угол.Ответ дайте в градусах.3)Разность углов,прилежащих к одной стороне параллелограмма,равна 102(градуса).Найдите меньший угол параллелограмма.Ответ дайте в градусах.4)Найдите тупой угол параллелограмма,если его острый угол равен 59(градусов).Ответ дайте в градусах.5)Периметр параллелограмма равен 52.Одна сторона параллелограмма на 23 больше другой.Найдите меньшую сторону параллелограмма.6)Две сторона параллелограмма относятся как 1:3,а периметр его равен 48.Найдите большую сторону параллелограмма.7)Сумма двух углов параллелограмма равна 60(градусов).Найдите один из оставшихся углов.Ответ дайте в градусах. 8)Найдите большой угол параллелограмма,если два его угла относятся как 5:7.Ответ дайте в градусах.
равна 320 градусам . Найдите четвертый угол. Ответ дайте в градусах.2.
как по условию А=B и A=35 то A+B=35 умножить на 2=70 градусов. Сумма углов выпуклого четырехугольника равна . грасусам
По условию C=D, значит каждый из них равен .
2. Сумма внутренних углов любого выпуклого n треугольника равна 180*(n-2). докажите
Виды по величине углов
Различают следующие виды многоугольника с тремя вершинами:
Тупоугольный треугольник
Согласно определению тупоугольного треугольника, один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.
Сумма углов треугольника. Теорема о сумме углов треугольника
Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.
Примеры решения задач
Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.
Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.
Значит, ∠A = ∠C = 80°.
Не должно вас удивить и то, что сумма углов треугольника равна 180°.
∠B = 180° − 80° − 80° = 20°.
Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.
Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.
А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.
Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.
Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.
Сумма углов равнобедренного треугольника
Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.
Возьмем треугольник КМН, который является равнобедренным, КН – его основание.
Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.
Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:
Определение равнобедренного треугольника
Определение 1 (Евклид). Треугольник, в котором длины двух сторон равны между собой называется равнобедренным треугольником.
Равные стороны равнобедренного трекугольника называются боковыми сторонами. Третья сторона равнобедренного треугольника называется основанием треугольника (Рис.1).
Угол между боковыми сторонами равнобедненного треугольника (( small angle A ) ) называется вершинным углом. Углы между основанием и боковыми сторонами (( small angle B, angle C ) ) называются углами при основании.
Существует более общее определение равнобедненого треугольника:
Определение 2 (Современная трактовка). Треугольник, в котором длины хотя бы двух сторон равны между собой называется равнобедренным треугольником.
Из определения 2 следует, что равносторонний треугольник является частным случаем равнобедренного треугольника. Действительно, в качестве равных сторон можно взять любые две стороны равностороннего треугольника, а третья сторона будет основанием.
Какой треугольник называется равнобедренным?
Равнобедренным называется треугольник, у которого две стороны равны.
Давайте посмотрим на такой треугольник:
На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.
А вот как называются стороны равнобедренного треугольника:
AB и BC — боковые стороны,
AC — основание треугольника.
Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.
Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Признаки равнобедренного треугольника
Доказательство
Рассмотрим треугольник $ABC$.
Докажем первый пункт теоремы
Докажем, что если $angle B=angle C$, то $AB=AC$.
Первый способ.
Поскольку $angle B$ и $angle C$ острые (иначе сумма углов
треугольника $ABC$ была бы больше $180^circ$), то высота,
проведенная из вершины $A$ падает на сторону $BC$.
Так как сумма углов треугольника равна $180^circ$, то $angle 1=180^circ-90^circ-angle B=180^circ-90^circ-angle C=angle 2$.
Следовательно, треугольники $ABD$ и $ACD$ равны по второму признаку равенства треугольников $(angle 1=angle 2, angle 3=angle 4, AD$– общая сторона$)$.
Тогда $AB=AC$, то есть треугольник равнобедренный.
Второй способ.
Если предположить, что одна из указанных сторон больше другой, то угол, лежащий против нее, будет больше угла, лежащего против другой стороны, а это противоречит условию (тому, что данные углы равны).
Докажем второй пункт теоремы
Докажем теперь, что если $AD$ – медиана и высота, то треугольник равнобедренный.
Действительно, так как $BD=DC, angle 3=angle 4=90^circ$, a $AD$ – общая сторона, то треугольники $ABD$
и $ACD$ равны по первому признаку равенства треугольников.
Следовательно, $AB=AC$, то есть треугольник равнобедренный.
Докажем третий пункт теоремы
Докажем, что если $AD$ – биссектриса и высота для $ riangle ABС$, то треугольник равнобедренный.
Действительно, так как $angle 1 =angle 2, angle 3=angle 4=90^circ$, a $AD$ – общая сторона, то
треугольники $ABD$ и $ACD$ равны по второму признаку равенства треугольников.
Докажем четвертый пункт теоремы
Докажем, что если $AD$ – медиана и биссектриса, то треугольник
равнобедренный.
Предположим противное – треугольник $ABC$ не равнобедренный, и, следовательно, $AD$ не
высота.
Проведем через точку $D$ прямую $l$ перпендикулярно $AD$.
Обозначим точки пересечения прямой $l$ с прямыми $AB$ и $AC$ как $M$
и $N$ соответственно.
Треугольник $AMN$ – равнобедренный, так как $AD$ – биссектриса и высота этого треугольника.
Тогда $AD$ – медиана треугольника $AMN$, то есть $MD=ND$.
Тогда треугольники $BMD$ и $CND$ равны по первому признаку $(angle BDM=angle CDN$ как
вертикальные, $BD=DC, MD=ND)$.
Тогда $angle 4=angle 5$, и, следовательно, прямые $AB$ и $AC$ параллельны, что невозможно.
· Последнее изменение: 2016/05/08 23:28 —
Следствие
Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° – не больше и не меньше. Вот это и нужно было доказать.
Ответы
Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов – при каждой вершине по два.
Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,
∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.
Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:
∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).
С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:
∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.
Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.
Пускай у нас есть произвольный треугольник с вершинами КМН.
Равносторонний треугольник
Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.
Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.
Существуют еще такие свойства, характерные для равностороннего треугольника:
- медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
- если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
- если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
- площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, AH = HC и BH — медиана.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Во-вторых, AH = HC и BH — медиана.
Признак 1. Если в треугольнике две стороны равны, то треугольник является равнобедренным.
Признак 1 следует из определения 1.
Признак 2. Если в треугольнике два угла равны, то треугольник является равнобедренным.
Доказательство признака 2 смотрите в статье Соотношения между сторонами и углами треугольника (Следствие 2. Признак равнобедренного треугольника).
Признак 3. Если в треугольнике высота проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство. Пусть в треугольнике ( small ABC ) ( small AH ) является высотой и медианой (Рис.4). Тогда ( small angle 3=angle4=90°, ) ( small CH=HB. ) Треугольники ( small AHC ) и ( small AHB ) равны по двум сторонам и углу между ними (первый признак равенства треугольников): ( small AH ) − общая сторона, ( small CH=HB, ) ( small angle 3=angle4. ) Следовательно ( small AB=AC. )
Признак 4. Если в треугольнике высота проведенная к одной стороне совпадает с биссектрисой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство. Пусть в треугольнике ( small ABC ) ( small AH ) является высотой и биссектрисой (Рис.4). Тогда ( small angle 3=angle4=90°, ) ( small angle 1=angle2. ) Треугольники ( small AHC ) и ( small AHB ) равны по стороне и прилежащим двум углам (второй признак равенства треугольников): ( small AH ) − общая сторона, ( small angle 1=angle 2, ) ( small angle 3=angle4. ) Следовательно ( small AB=AC. )
Признак 5. Если в треугольнике биссектриса проведенная к одной стороне совпадает с медианой проведенной к этой же стороне, то треугольник является равнобедренным.
Доказательство (Вариант 1). Пусть в треугольнике ( small ABC ) ( small AH ) является биссектрисой и медианой (Рис.5). Тогда
Применим теорему синусов для треугольника ( small AHC ):
Применим теорему синусов для треугольника ( small AHB ):
тогда, из (5), (6), (7) получим:
Следовательно ( small sin angle C= sin angle B. ) Поскольку сумма всех углов треугольника равна 180°, то нам интересует синус углов от 0 до 180°. Учитывая это получим, что синусы углов равны в двух случаях: 1) ( small angle C= angle B, ) 2) ( small angle C= 180° – angle B. ) Поскольку сумма двух углов треугольника меньше 180°: ( small angle C + angle B Доказательство (Вариант 2). Пусть в треугольнике ( small ABC ) ( small AH ) является биссектрисой и медианой, т.е. ( small angle 1=angle 2, ) ( small CH=HB ) (Рис.6). На луче ( small AH ) отложим отрезок ( small HD ) так, чтобы ( small AH=HD. ) Соединим точки ( small C ) и ( small D. )
Треугольники ( small AHB ) и ( small DHC ) равны по двум сторонам и углу между ними (первый признак равенства треугольников). Действительно: ( small AH=HD, ) ( small CH=HB, ) ( small angle 4=angle 5 ) (углы 4 и 5 вертикальные). Тогда ( small AB=CD, ) ( small angle 6=angle 2. ) Отсюда ( small angle 6=angle 1. ) Получили, что треугольник ( small CAD ) равнобедренный (признак 2). Тогда ( small AC=CD. ) Но ( small AB=CD ) и, следовательно ( small AB=AC. ) Получили, что треугольник ( small ABC ) равнобедренный.
Теорема о равнобедренном треугольнике
Теорема 1. Углы, прилежащие к основанию равнобедренного треугольника равны.
Доказательство (доказательство Прокла). Пусть задан равнобедренный треугольник ABC, где AB=AC (Рис.2). Докажем, что ( small angle B= angle C. ) Возьмем любую точку D на стороне AC и точку E на стороне AB так, чтобы AD=AE. Проведем отрезки DE, CE, BD. Треугольники ABD и ACE равны по двум сторонам и углу между ними: AE=AD, AC=AB, угол ( small angle A ) общий (см. статью на странице Треугольники. Признаки равенства треугольников). Отсюда следует:
Из ( small AB=AC) и ( small AD=AE ) следует:
Рассмотрим треугольники CBE и BCD. Они равны по трем сторонам: ( small CE=BD,) ( small CD=BE ,) сторона ( small BC ) общая. Отсюда следует, что
Из (2) и (4) следует, что ( small angle B= angle C. )
Доказательство (Вариант 2). Пусть задан равнобедренный треугольник ABC, где AB=AC (Рис.3). Проведем биссектрису ( small AH ) треугольника. Тогда ( small angle CAH=angle BAH. ) Докажем, что ( small angle B= angle C. ) Треугольники AHB и AHC равны по двум сторонам и углу между ними: AC=AB, сторона ( small AH ) общая, ( small angle CAH=angle BAH. ) Отсюда следует: ( small angle B= angle C. )
Выделяют основные свойства, которые характерны для каждого вида треугольника:
Прямоугольный треугольник
Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.
Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° – 90° = 90°. Именно это нам и следовало доказать.
В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:
Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.
Свойства, признаки и формулы
О чем эта статья:
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Равнобедренный треугольник. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти неизвестные элементы (стороны, углы) а также периметр, площадь, высоты равнобедренного треугольника. Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор
Задачи и решения
Задача 1. Известны основание ( small a=5 ) и высота ( small h=6 ) равнобедренного треугольника. Найти углы, боковые стороны, периметр, площадь.
Решение. Найдем боковые стороны ( small b ) и ( small c ) равнобедренного треугольника. Воспользуемся теоремой Пифагора:
Подставляя значения ( small a ) и ( small h ) в (9), получим:
Боковая сторона ( small c ) равнобедренного треугольника равна:
Найдем периметр треугольника. Периметр треугольника равен сумме длин его сторон:
Подставляя значения ( small a=5, ) ( small b=6.5 ) и ( small c=6.5 ) в (10), получим:
Найдем угол ( small B ) равнобедренного треугольника:
Подставляя значения ( small a=5, ) ( small h=6 ) в (11), получим:
Тогда угол ( small C ) равнобедренного треугольника равен:
Поскольку сумма всех углов треугольника равна 180°, то имеем:
Площадь треугольника можно вычислить из формулы:
Подставляя значения ( small a=5, ) ( small h=6 ) в (12), получим:
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
Теорема 2. В равнобедренном треугольнике биссектриса проведенная к основанию является медианой и высотой.
Доказательство. Рассмотрим равнобедренный треугольник ABC, где AB=AC, а AH− биссектриса треугольника (Рис.3). Треугольники AHB и AHC равны по двум сторонам и углу между ними: AC=AB, сторона ( small AH ) общая, ( small angle 1=angle 2. ) Тогда ( small CH=HB, ) ( small angle 3=angle 4. ) Равенство ( small CH=HB ) означает, что ( small AH ) является также медианой треугольника ABC. Углы ( small angle 3) и ( angle 4 ) смежные. Следовательно их сумма равна 180° и, поскольку эти углы равны, то каждый из этих углов равен 90°. Тогда ( small AH ) является также высотой треугольника ( small ABC. ) Поскольку высота ( small AH ) перпендикулярна к ( small BC ) и ( small CH=HB, ) то ( small AH ) является также серединным перпендикуляром к основанию равнобедренного треугольника.
Мы доказали, что биссектриса, медиана, высота и серединный перпендикуляр равнобедренного треугольника, проведенные к основанию совпадают.
Исходя из теоремы 2 можно сформулировать следующие теоремы, доказательство которых аналогично доказательству теоремы 2:
Теорема 3. В равнобедренном треугольнике медиана проведенная к основанию является биссектрисой и высотой.
Теорема 4. В равнобедренном треугольнике высота проведенная к основанию является биссектрисой и медианой.
Признак равенства равнобедренных треугольников по боковой стороне и углу при вершине
Если боковая сторона и угол при вершине одного равнобедренного треугольники соответственно равны боковой стороне и углу при вершине другого равнобедренного треугольника, то такие треугольники равны.
Действительно. Так как боковые стороны равнобедненного треугольника равны, то имеем: две стороны и угол между ними одного треугольника соотвественно равны двум сторонам и углу между ними другого треугольника. Тогда по первому признаку равенства треугольников, эти реугольники равны.
Рассмотрим равнобедренный треугольник $ABC$ с основанием $BC$.
Пусть $AD$ – биссектриса этого треугольника.
Треугольники $ABD$ и $ACD$ равны по первому признаку равенства треугольников $(AB=AC, AD$ –
общая, $angle 1=angle 2)$.
Следовательно, $angle B=angle C$.
Кроме того, $angle 3=angle 4$, а поскольку они смежные, то каждый из них является прямым, то есть $AD$ – высота.
Из равенства этих треугольников следует, что $BD=DC$.
Следовательно $AD$ – не только биссектриса и высота, но и медиана.