Ультрафиолетовое излучение

Рэлеевское рассеяние света

Запрос Ультрафиолет перенаправляется сюда; см. также другие значения.

Портативная ультра­фиолетовая лампа

Люминесценция минералов в ультрафиолетовом излучении (подсвечены лампой Вуда)

Иоганн Вильгельм Риттер, 1804 год

После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и далее противоположного конца видимого спектра, с длинами волн короче, чем у излучения фиолетового цвета.

В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие учёные, включая Риттера, пришли к соглашению, что свет состоит из трёх отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля, Мачедонио Меллони и др.

НаименованиеДлина волны, нмЧастота, ПГцКоличество энергии на фотон, эВАббревиатура
Ближний400 – 3000,75 – 13,1 – 4,13NUV
Ультрафиолет А400 – 3150,75 – 0,9523,1 – 3,94UVA
Средний300 – 2001 – 1,54,13 – 6,20MUV
Ультрафиолет B315 – 2800,952 – 1,073,94 – 4,43UVB
Дальний200 – 1221,5 – 2,466,2 – 10,2FUV
Ультрафиолет С280 – 1001,07 – 34,43 – 12,4UVC
Вакуумный200 – 101,5 – 306,2 – 124VUV
Экстремальный121 – 102,48 – 3010,2 – 124EUV, XUV

Ближний ультрафиолетовый диапазон часто называют чёрным светом, так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от светодиодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.

Для дальнего и экстремального диапазона часто используется термин вакуумный (VUV), ввиду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Основной источник ультрафиолетового излучения на Земле

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • Две ультрафиолетовые люминесцентные лампы, обе лампы излучают длинные волны (УФ-А), длина которых находится в диапазоне от 350 до 370 нм
  • Лампа ДРЛ без колбы — мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи

Преимущества и применение УФ-ламп в различных отраслях

Благодаря созданию и совершенствованию искусственных источников УФ-излучения, специалистам предоставляются существенно большие возможности, чем при использовании естественного УФ-излучения. Эритемные лампы, установки типа Искусственный солярий и лампы полного спектра успешно применяются в различных сферах, включая медицину, сельское хозяйство, а также для решения проблем сезонного расстройства настроения.

УФ-лампы в медицине

Эритемные лампы были созданы для компенсации УФ-недостаточности естественного излучения и имеют антирахитное действие. Используются в медицинских учреждениях, а также в северных регионах для облучения молодняка сельскохозяйственных животных.

УФ-лампы в сельском хозяйстве

УФ-лампы для загара широко распространены в странах Центральной и Северной Европы, а также в России. Эти лампы способствуют быстрому образованию загара и применяются в специальных установках, таких как Искусственный солярий.

Лампы полного спектра и сезонное расстройство настроения

Лампы полного спектра воспроизводят спектр естественного света не только в видимой, но и в УФ-области. Они помогают бороться с сезонным расстройством настроения, вызванным недостаточным освещением. Производители таких ламп – Osram и Radium.

Все установки и лампы должны соответствовать стандартам безопасности, таким как IEC 62471:2006 и ГОСТ Р МЭК 62471-2013, для обеспечения безопасной эксплуатации и минимизации негативного воздействия.


В результате совершенствования технологий в области УФ-излучения, сферы применения УФ-ламп становятся все более разнообразными и эффективными. Будущее развития данной области обещает еще больше инноваций и возможностей для решения различных проблем в различных отраслях.

Лампы для борьбы с летающими насекомыми-вредителями

Лампы, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), целесообразно применять для борьбы с последними. Такие лампы используются в качестве ламп-аттрактантов в устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.


Ультрафиолетовые лазеры и их применение

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях, в микрохирургии глаза (LASIK), для лазерной абляции.

Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.


Деградация полимеров и красителей под воздействием ультрафиолета

Многие полимеры, используемые в товарах широкого потребления, деградируют под действием УФ-света. Проблема проявляется в исчезновении цвета, потускнении поверхности, растрескивании, а иногда и полном разрушении самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света.

К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидные (в том числе кевлар). Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ.


Применение ультрафиолета в различных областях

Воздействие УФ-лучей на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета на поверхность полиметилметакрилата.


Влияние ультрафиолета на здоровье человека

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  1. УФ-C
  2. УФ-B
  3. УФ-A

Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного излучения через земную атмосферу. Излучение из диапазона УФ-A поглощается атмосферой слабо, поэтому радиация, достигающая поверхности Земли, содержит в значительной степени УФ-A и в небольшой доле — УФ-B.

Помимо своих вредных свойств, ультрафиолетовые лучи могут быть также использованы для обеззараживания воздуха, воды и различных поверхностей. Ультрафиолетовое излучение может убивать микроорганизмы, включая бактерии, вирусы и грибки, делая его эффективным методом дезинфекции.

Воздух

Системы обеззараживания воздуха на основе ультрафиолетового излучения используются в больницах, лабораториях и других местах, где важно предотвращение распространения инфекций через воздух. Ультрафиолетовые лампы устанавливаются в системах вентиляции или воздушных очистителях и уничтожают бактерии и вирусы, проходящие через них.

Вода

Ультрафиолетовые стерилизаторы для воды используются для обеззараживания питьевой воды, в том числе в системах очистки воды в домашних условиях. Прохождение воды через ультрафиолетовую камеру уничтожает патогенные микроорганизмы, не изменяя химический состав воды.

Поверхности

Ультрафиолетовые лампы также могут использоваться для обеззараживания различных поверхностей, таких как медицинское оборудование, столовые приборы или даже упаковка продуктов. После облучения ультрафиолетом микроорганизмы на поверхности становятся неактивными и перестают представлять опасность для здоровья.

Заключение

Ультрафиолетовое излучение имеет как положительные, так и отрицательные стороны. Правильное использование защитных средств и соблюдение мер предосторожности способны минимизировать риски для здоровья при воздействии ультрафиолета. Кроме того, ультрафиолетовое излучение может быть эффективным методом обеззараживания в различных сферах.

Относительная спектральная бактерицидная эффективность ультрафиолетового излучения — относительная зависимость действия бактерицидного ультрафиолетового излучения от длины волны в спектральном диапазоне 205—315 нм. При длине волны 265 нм максимальное значение спектральной бактерицидной эффективности равно единице.

Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.

Обеззараживание воздуха и поверхностей

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ-лучами флора водоёмов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами. Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных ламп, а связано с материалом колбы лампы — кварцевым стеклом.

Дезинфекция питьевой воды

УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жёсткого ультрафиолета.

Хотя по эффективности обеззараживания воды УФ-обработка в несколько раз уступает озонированию, на использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объём обрабатываемой воды невелик.

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отражённого излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге рассказывает об этом так:

Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным «неземным» цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.

— «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 стр.), с. 11

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой плёнки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более тёмными пятнами проступают отреставрированные участки и кустарно переписанные подписи.

Денежная купюра в ультрафиолетовом излучении

Ультрафиолетовое излучение применяется для:

Особенности рэлеевского рассеяния

Воздух состоит из смеси разных газов, а также частичек пыли и других мельчайших элементов. На этих частицах свет рассеивается в том случае, если они меньше, чем длина его волны. Именно рэлеевское рассеяние отвечает, например, за синий цвет дневного неба:

Аналогичное явление, возникающее из-за рэлеевского рассеяния в воздухе, заметно и на закате. Лучи синего и фиолетового цвета уходят, а видимыми остаются только желто-красные. Зато из космоса, куда отправились синие лучи, кажется, что Земля имеет голубой цвет.

Явление получило название по имени физика лорда Рэлея, который в конце XIX века установил, что длина волны напрямую влияет на интенсивность света. Кроме того, он рассчитал, что на интенсивность влияют угол зрения, размер частиц, расстояние до точки наблюдения и некоторые другие факторы. Рассеяние характерно не только для астрономических процессов: например, в производстве различных промышленных инструментов используются знания о рэлеевском рассеивании света в оптическом волокне.

Рэлеевское и комбинационное рассеяние света

Одна из главных характеристик явления – упругость, благодаря которой сохраняется энергия падающих частиц, и для рассеянных фотонов характерна та же энергия, что и для падающих. В отличие от рэлеевского, комбинационное рассеяние света – неупругое, то есть не сохраняющее энергию падающих частиц.

Ультрафиолетовое излучение

Лорд Рэлей. Изображение с сайта ru.wikipedia.org

4glaza.ru Март 2023 Статья одобрена экспертом: Ольга Терентьева

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Рэлеевское рассеяние света

Хорошо известно, что небо, не затянутое облаками, синего цвета, а при закате оно становится красным. Это удивительный факт, если учитывать, что солнечный свет по своей природе – белый. Главная причина этого явления – так называемое рэлеевское рассеяние света, оптическое явление, которое возникает при столкновении волны света с малыми частицам атмосферы.

Какого цвета Солнце на самом деле? Объясняет астрофизик

Время на прочтение

Ультрафиолетовое излучение

Если поговорка «видеть – значит верить» и верна, то как раз в том случае, когда мы имеем дело со светом, попадающим в наши глаза. В конце концов, это само определение того, что значит, с человеческой точки зрения, для нас видеть что-либо. И всё же люди почему-то ведутся на очень, очень сомнительное утверждение, что Солнце «на самом деле» – это звезда зелёного цвета.

Если вы раньше открывали глаза, видели Солнце и видели предметы зелёного цвета, то вы знаете из своего личного опыта, что Солнце на самом деле не зелёное. Так как же получается, что умные люди убеждают себя в том, что Солнце действительно имеет сине-зелёный оттенок?

В этом абсурдном утверждении – и будьте уверены, оно абсурдно – кроется крошечное ядро истины: Солнце содержит большее количество фотонов «зеленого света», чем фотонов любой другой длины волны (т.е. цвета). Но просто наличие пика длины волны в спектре света, или максимальная интенсивность на заданной частоте, или большее количество фотонов в определённом цветовом диапазоне – этого недостаточно, чтобы определить, какого цвета объект, даже такой объект, как Солнце, в действительности. Солнце, как вам говорят ваши глаза, действительно белая звезда, что может продемонстрировать простейший эксперимент.

Ультрафиолетовое излучение

Как ведёт себя луч солнечного света – возможно, самый яркий пример белого света – при прохождении через призму. Волны света разных энергий движется с разной скоростью через среду, но как все они движутся с одинаковой скоростью через вакуум, поэтому свет, не проходящий через преломляющую среду, остаётся белым.

Что это за эксперимент?

Он очень прост: возьмите вещество, способное одинаково хорошо отражать все существующие длины волн света (видимого для человека), посветите на него светом, цвет которого вы хотите измерить, а затем с помощью глаз определите, какой цвет вы видите, когда этот свет освещает вашу отражающую поверхность.

Где же найти это мистическое вещество, которое одинаково хорошо отражает все длины волн видимого света?

Всё очень просто: подойдёт любой твёрдый, идеально белый предмет. Ярко-белый лист бумаги, окрашенный в белый цвет участок стены, белая доска или даже белый цветок, полотенце или простыня подойдут как нельзя лучше.

Если на него посветить красным светом, он покажется красным, потому что отражает красный свет. Если посветить зелёным, или жёлтым, или розовым, или пурпурным, или оранжевым светом, то результат будет именно таким, как вы и ожидали: он отражает цвет света, который вы на него направили, и, следовательно, сам принимает этот цвет.

Если провести эксперимент, то, например, взять на улице белый лист бумаги и держать его так, чтобы на него падал прямой солнечный свет, то простое наблюдение за видимым цветом бумаги позволит определить, какого цвета Солнце. Если только вы не смотрите на него на восходе или закате, во время полного солнечного затмения или в условиях сильного загрязнения неба (например, в сезон лесных пожаров), цвет бумаги будет однозначно белым – по крайней мере, для ваших глаз.

Ультрафиолетовое излучение

Лист белой бумаги под прямыми лучами солнца. Если бы солнечный свет был какого-либо другого цвета, кроме белого, эта бумага приобрела бы цвет этого света; тот факт, что она по-прежнему выглядит белой, является отличным признаком того, что солнечный свет тоже белый.

На самом деле астрономы часто говорят, что «зелёных» звёзд не существует, именно благодаря тесту такого типа. Если бы вы провели подобный эксперимент с любой звездой в пределах известной Вселенной, то обнаружили бы, что существует лишь ограниченный набор цветов звёзд.

Для маломассивных звёзд, таких как красные карлики или ещё более холодные классы звёзд (например, класс «несостоявшихся звёзд», известный как коричневые карлики), характерна гамма цветов, зависящая от их температуры: самые низкотемпературные объекты при температуре 800-1600 К имеют слабый румяно-коричневый цвет, который при более высоких температурах (1600-2700 К) переходит в глубокий, заметный красный.

При переходе к более высоким звёздным массам (или более развитым звёздам-гигантам/сверхгигантам) можно найти звёзды с температурой ~2700-4000 К, которые выглядят красно-оранжевыми в нижней части и оранжево-жёлтыми в верхней части диаграммы, как Арктур или Альдебаран.

При повышении температуры звезды в диапазоне ~4000-5000 К цвет становится более жёлтым или жёлто-белым, как, например, у яркой звезды Поллукс. Такие условия освещения мы наблюдаем на Земле в периоды, соответствующие раннему утру и позднему вечеру: атмосфера блокирует значительную часть света с наименьшей длиной волны, оставляя более длинноволновый свет.

При температурах примерно от 5000 до 6000 К, к которым относится наше Солнце и подобные ему звёзды, цветовая картина имеет вид от желтовато-белого до белого, к которому относится не только Солнце, но и многие яркие звёзды, в том числе и Капелла.

Затем, чем выше 6000 К находится звезда, цвет начинает приобретать сначала голубой, а затем более яркий синий оттенок, как, например, у ярких звёзд Кастор, Ригель и самой яркой из всех видимых с Земли звёзд – Сириуса.

Двойная звезда Альбирео, показанная ниже, представляет собой прекрасный пример двух очень близко расположенных звёзд с совершенно разными цветотемпературными характеристиками: менее яркая голубая звезда имеет температуру около 13 000 К, а её более яркая жёлтая звезда имеет температуру всего около 4 400 К.

Ультрафиолетовое излучение

Звезда Альбирео, узнаваемая по расположению в основании «Северного креста» в астеризме, известном как Летний Треугольник, легко разрешается на два компонента с помощью небольшого телескопа или бинокля. Более яркая жёлтая звезда имеет температуру около 4 400 К, а более тусклая голубая звезда гораздо горячее – около 13 000 К. Разница в цвете возникает из-за разницы температур между звёздами. Альбирео считается широкой двойной звездой, но, несмотря на то, что уже несколько столетий известно, что она состоит из двух звёзд, вопрос о том, связана ли она гравитационно или нет, до сих пор иногда обсуждается.

Вот и всё. Когда речь идёт о звёздах, то можно выбрать только коричнево-красный, красный, оранжевый, жёлтый, белый, голубовато-белый, синий, и больше никаких вариантов. Это единственные цвета звёзд, которые вообще бывают, без каких-либо более экзотических цветов, на которые можно было бы рассчитывать. Не существует звёзд любого другого цвета – будь то фиолетовый, зелёный, розовый, пурпурный, бордовый, шартрез, аквамарин и многие другие.

Причина, по которой так много людей ошибаются в этом вопросе – и даже, если хорошенько поискать, можно найти страницы NASA, на которых это тоже неверно, – заключается в том, что они смешивают два явления: цвет объекта и длину волны света, соответствующую некоему «пику» в спектре объекта.

Существует физическое обстоятельство, при котором можно напрямую сопоставить «длину волны света» с «цветом», но это относительно редкое обстоятельство: только при наличии монохроматического света, или когда все фотоны (или частицы света), исходящие от источника света, имеют одинаковую, точную длину волны. Это обстоятельство часто возникает при работе с лазерным излучением или некоторыми классами светодиодов, которые могут иметь одну длину волны красного, жёлтого, зелёного, синего, фиолетового и других цветов, но это, как правило, не относится к свету, исходящему от звёзд.

Ультрафиолетовое излучение

Набор лазерных указок Q-line демонстрирует разнообразие цветов и компактные размеры, ставшие сегодня привычными для лазеров. Переведя электроны в возбуждённое состояние и стимулировав их фотоном нужной длины волны, можно вызвать излучение другого фотона точно такой же энергии и длины волны. Именно таким образом и создаётся свет для лазера: путём вынужденной эмиссии излучения.

В отличие от лазеров и других источников монохроматического света, свет реальных звёзд состоит из излучения, имеющего огромный диапазон длин волн, зависящий от температуры звезды.

Любой объект, нагретый до определённой температуры, испускает излучение с различными длинами волн и частотами, причём интенсивность излучения достигает максимума на более коротких длинах волн, более высоких энергиях и более высоких частотах по мере повышения температуры объекта. Именно поэтому металлический котелок, нагретый на плите, станет горячим задолго до того, как вы сможете увидеть его свечение, поскольку пик интенсивности излучения приходится на инфракрасный спектр, который мы ощущаем как тепло.

По мере повышения температуры объект становится всё более горячим, и пиковая длина волны, которую он излучает, смещается в сторону более коротких волн – в видимую часть спектра. Интересно, что более горячие объекты продолжают выдавать больше излучения, чем более холодные, на всех длинах волн, даже в том диапазоне длин волн, где у более холодного объекта наблюдается пик интенсивности. Чем больше тепла содержит объект, тем большее количество энергии он излучает на всех длинах волн и тем короче будет пик его интенсивности. В самом идеализированном газе этот объект также будет идеальным поглотителем всего внешнего излучения. В этом случае его излучение будет иметь явно выраженный спектр – спектр абсолютно чёрного тела, который служит отличным приближением для спектра большинства звёзд.

Ультрафиолетовое излучение

Один и тот же объём вещества, нагретый до разных температур, будет излучать различный спектр света. При более высоких температурах пик излучения смещается к более коротким длинам волн, однако цвет объекта определяется именно всем спектром излучения видимого света, а не только пиком спектра.

Если говорить ещё более подробно, то оказывается, что Солнце (или любая другая звезда) не является истинным чёрным телом, поскольку не имеет твёрдой, идеально поглощающей поверхности для излучения. Вместо этого у звёзд есть фотосферы, полупрозрачные для света; они хорошо поглощают свет, но при этом имеют низкую плотность и градиент температуры. Чем дальше от центра звезды, тем холоднее, что имеет большое значение для медленно вращающихся звёзд, таких как Солнце, но ещё большее – для быстро вращающихся, таких как близкая яркая звезда Вега.

Лишь небольшая часть энергии, которую мы получаем от Солнца, излучается с самого края фотосферы; большая часть воспринимаемого нами света исходит из глубин Солнца на несколько сотен или даже тысяч километров вниз. Поскольку там жарче, свет Солнца ведёт себя не как единое "чёрное тело" при одной температуре, а как сумма чёрных тел в диапазоне температур от ~5700 K до почти 7000 K в глубине Солнца.

Для быстро вращающихся звёзд, таких как Вега, температура не остаётся равномерной по всей звезде, а сама звезда, подобно Земле, сжата на полюсах и выпукла на экваторе. В результате температура в полярных областях может быть на несколько тысяч градусов выше, чем в более удалённых от центра экваториальных областях.

Ультрафиолетовое излучение

Реальный свет Солнца (жёлтая кривая, слева) в сравнении с идеальным чёрным телом (серый цвет) показывает, что Солнце представляет собой скорее ряд чёрных тел из-за толщины его фотосферы; справа – реальное идеальное чёрное тело реликтового излучения, измеренное спутником COBE. Обратите внимание, что «полосы ошибок» справа составляют поразительные 400 сигм. Согласие между теорией и наблюдениями здесь историческое, а пик наблюдаемого спектра определяет остаточную температуру реликтового излучения: 2,73 К.

Мы обнаружили большое разнообразие звёзд по их массам, температурам, яркости и многим другим свойствам. Мы узнали, что звезда может иметь пик интенсивности на любой длине волны, в том числе во всём видимом спектре света (от фиолетового до красного) или даже за его пределами, например в ультрафиолетовом или инфракрасном диапазоне, в том числе очень далеко в этих невидимых диапазонах волн.

Но не поддавайтесь искушению спутать «место пика длины волны» с цветом; поскольку мы имеем дело не с монохроматическим светом, это просто некорректно называть цветом звезды. На самом деле никакого «цвета» не существует независимо от нашего человеческого восприятия, и для этого необходимо понять, что является цветом для человека: реакция колбочек в наших глазах и интерпретация этих реакций нашим мозгом.

В обычном человеческом глазу есть три типа колбочек и один тип палочек. Палочки видят только яркость (свойство монохрома) и являются наиболее удобным инструментом в условиях низкой освещённости и в периферийном зрении. Колбочки, напротив, расположены в основном в поле зрения, обращённом вперёд, и лучше всего работают в условиях яркого света (например, днём); они бывают трёх видов: S, M и L, что соответствует короткой, средней и длинной длине волны.

Ультрафиолетовое излучение

Три типа колбочек в глазах человека – S, M и L – показаны с указанием диапазона длин волн, на которые они реагируют: короткие, средние и длинные волны. У некоторых людей отсутствует один тип колбочек, что делает их дальтониками, а некоторые люди имеют четыре типа колбочек и могут видеть больше цветов, чем все остальные: тетрахроматы.

Относительная величина реакции каждого из трёх типов колбочек позволяет нашему мозгу интерпретировать цвет объектов и даже видеть составные цвета: цвета, которые не входят в спектр видимого света, но существуют в природе как комбинации различных длин волн света, суммированных вместе. Например, розовый цвет – это белый свет с дополнительной красной составляющей. Пурпурный свет представляет собой комбинацию синего/фиолетового и красного света, поэтому свет, оптимизированный для роста растений (т.е. поглощаемый молекулами хлорофилла А и В), имеет такой оттенок. А коричневый цвет, например, представляет собой смесь большего количества красного света с меньшим количеством зелёного/жёлтого света, но с меньшим количеством синего света.

Солнце, представляющее собой смесь всех различных цветов света, является самым ярким примером «белого света», способного поглощать и/или отражать свет любой длины волны (или комбинации длин волн). Однако то, что в его состав входит зелёный свет, не делает его зелёным: во Вселенной нет звёзд, которые человеческий глаз воспринимал бы как зелёные.

Однако некоторые природные явления действительно имеют зелёный цвет, например, полярное сияние, светящиеся зелёным планетарные туманности или так называемые зелёные горошины галактик, которые мы видим в космосе. Причина зелёного цвета этих явлений заключается в том, что их свет возникает в результате специфического перехода электронов в ионах дважды ионизированного кислорода, который происходит на монохроматической длине волны: 500,7 нанометра, что очень близко к зелёному цвету.

Ультрафиолетовое излучение

Вокруг различных звёздных останков и умирающих звёзд дважды ионизованные атомы кислорода дают характерное зеленое свечение, поскольку электроны при нагреве до температуры ~50 000 К каскадно спускаются по различным энергетическим уровням. Здесь ярко светится планетарная туманность IC 1295. Это явление также способствует окраске так называемых «зелёных горошин» галактик, а также земных аврор.

Учитывая, что Солнце действительно излучает белый свет, может показаться странным, что оно не всегда выглядит белым. На это есть веская причина: очень немногие из нас имеют возможность наблюдать Солнце из вакуума космоса. Напротив, почти все мы находимся здесь, на поверхности Земли, и поэтому видим свет Солнца только в том виде, в котором он проходит через земную атмосферу.

Атмосфера Земли состоит из частиц, и эти молекулы могут рассеивать свет. В частности, они рассеивают свет разных длин волн с разной эффективностью: более коротковолновый свет, например голубой и фиолетовый, рассеивается легче, а более длинноволновый, например оранжевый и красный, рассеивается хуже. Небо кажется голубым, например, потому, что голубой свет Солнца рассеивается в атмосфере в разных направлениях.

Когда Солнце находится высоко над горизонтом, свет проходит лишь через небольшую часть земной атмосферы и кажется белым. По мере опускания ближе к горизонту его температура становится ниже, и на закате/восходе оно кажется красным, а по мере подъёма выше – оранжевым, жёлтым и, в конце концов, белым, как и Луна. При очень благоприятных обстоятельствах в момент восхода или захода Солнца или Луны над ним можно увидеть небольшую «вспышку» зеленого или даже синего света, поскольку эти более короткие волны при прохождении через атмосферу Земли могут «изгибаться» чуть сильнее, чем более длинные жёлтые, оранжевые и красные.

Ультрафиолетовое излучение

Когда Солнце заходит за горизонт, последние остатки его света отклоняются земной атмосферой. Голубые и зелёные лучи Солнца изгибаются несколько сильнее, чем более длинные волны, что приводит к оптическому явлению, известному как «зелёный луч» над остальной частью солнечного диска.

Однако простое выделение зелёной части излучаемого Солнцем света при соответствующих условиях не означает, что наше Солнце действительно является зеленой звездой. Хотя некоторые до сих пор называют наше Солнце звездой типа «жёлтый карлик», на самом деле наше Солнце – самое белое из известных нам светил. Мы не случайно видим солнечный свет белым, поскольку наши глаза и колбочки в них произошли от более ранних форм жизни, которые всегда знали Солнце, очень похожее на то, которое мы видим сегодня. Возможно, если бы мы появились на свет около более горячей или более холодной звезды, мы бы эволюционировали с глазами, колбочками и мозгом, которые интерпретировали бы свет любого цвета, излучаемый местной звездой, как «белый».

Но причина, которую люди приводят для обоснования утверждения, что «звёзды зелёные», в корне неверна, поскольку «пик длины волны» имеет очень и очень мало общего с тем, что на самом деле представляет собой внутренний цвет объекта или совокупности форм света. Понятия «длина волны» и «цвет» могут использоваться как взаимозаменяемые только в случае чисто монохроматического света. Если же свет состоит из множества различных длин волн, то такое упрощённое определение просто не годится: цвет для нашего глаза – это очень человеческое понятие. Это тот случай, когда действительно можно поверить своим глазам: хотя солнечный свет содержит зелёный цвет, он содержит и все остальные цвета. Если всё это суммировать – что наши глаза и мозг делают автоматически, – то получится просто белый цвет.

Если эта публикация вас вдохновила и вы хотите поддержать автора — не стесняйтесь нажать на кнопку

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *